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Abstract

It is well known that some complicated knots can have small total
curvature: in particular, there are families of knots whose crossing
numbers grow arbitrarily large, while the total curvatures remain uni-
formly bounded. The most familiar examples involve braids that look
long and thin. In this paper, we show that the heuristic description
“long and thin” is indeed the only way to have bounded total cur-
vature: If K is a smooth knot in R3, R the cross-section radius of a
uniform tube neighborhood K, L the arclength of K, and κ the total
curvature of K, then

crossing number of K ≤ L
R κ .

There exist families of knots in which the crossing numbers grow
as fast as the (4/3) power of L

R . Our theorem says that such families
have unbounded total curvature: If the total curvature is bounded,
then the growth rate can only be linear.

On the way to this theorem, we establish fundamental lemmas
about packing curves in limited volume: If a long smooth curve K
with arclength L is contained in a solid ball of radius ρ, then the
total curvature of K is at least proportional to L/ρ. If a long smooth
curve K is contained in a spherical shell of radii a < b, then the total
curvature of K is at least proportional to 1/

√
a.
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1 Introduction

The total curvature of smooth closed curve in R3 must be at least 2π; this is
the classical theorem of Fenchel [5, 11]. If the curve actually is a nontrivial
knot, then the Fary-Milnor theorem [6, 11] says the total curvature must be
> 4π. Are there properties of the knot that could guarantee larger total cur-
vature? Successive composition [7] or or other kinds of satellite constructions
([12] together with [11]) work. On the other hand, topological complexity
in the form of high crossing-number is not enough: it is well known since
[10] that one can construct knots with arbitrarily large minimum crossing-
number represented by curves with uniformly bounded total curvature. Here
is one way to build them.

Example 1 (Knots with bounded total curvature). Fix any odd integer
n. Construct a smooth knot Kn, with minimum crossing number n, as the
union of four arcs H, A,C1, C2, where the total curvatures are κ(H) → 0 as
n → ∞, κ(A) = 0, and κ(C1) ≈ κ(C2) ≈ 2π. Let H be the circular helix in
R3 parametrized as [cos(t), sin(t), n2t], t = 0 . . . nπ. The height coordinate
n2t makes κ(H) behave like 1/n for large n. Using any exponent larger than
1, i.e. n1+εt, still makes κ(H) → 0. Let A be the central axis of the cylinder
on which H runs. Let C1 and C2 be curves that smoothly connect the top
of H to the bottom of A and vice-versa. For large n, the tangent vectors at
the beginning and end of H are nearly vertical. The arcs C1 and C2 can
be chosen to be almost planar-convex curves, with total curvatures κ(Ci) ≈
2π. Similarly, for any (p, q), torus knots or links of type (p meridians, q
longitudes), can have total curvature close to 2πq if they are drawn on a
standard torus that is long and thin enough.

In this paper, we show that examples of the preceeding kind are, in a
sense, the only kind possible. In order to have total curvature uniformly
bounded, the knots must be “long and thin”; if we imagine the knots being
made of actual “rope”, then the ratio of length to rope-thickness is large.

Definition 1. Suppose K is a smooth knot in R3. For r > 0, consider the
disks of radius r normal to K, centered at points of K. For r sufficiently
small, these disks are pairwise disjoint and combine to form a tubular neigh-
borhood of K. Let R(K), the thickness radius of K, denote the supremum of
such “good” radii. The ropelength of K, denoted EL(K), is the ratio

EL(K) =
total arclength of K

R(K)
.
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Definition 2. Let K be a smooth knot. From almost every direction, if we
project K into a plane, the projection is regular, in particular there are only
finitely many crossings. We can average this crossing-number over all direc-
tions of projection (i.e. over the almost-all set of directions that give regular
projections). This average crossing number is denoted acn(K). Certainly, the
minimum crossing-number of the knot-type, cr[K], satisfies cr[K] ≤ acn(K).

Our main result is the following:

Theorem 1. If K is a smooth knot in R3, then (up to a multiplicative con-
stant independent of K)

acn(K) ≤ EL(K) κ(K) .

In particular, if we are given some family of knots in which total curvature
is uniformly bounded, while crossing number is growing, then the ropelength
must be growing at least as fast as the crossing numbers. Alternatively,
if the crossing numbers are growing faster than ropelength, then the total
curvatures must be growing fast enough to make up the difference. We
showed in [2, 3] that acn(K) ≤ EL(K)4/3, and there are examples [1, 4] where
the 4/3 power is achieved. In the particular examples of [1, 4], the knots
and links have evident growing total curvature; our theorem says that some
unbounded amount of total curvature must occur in any situation of more-
than-linear growth of crossings with ropelength.

If we model a knot made of actual ”rope” as a smooth curve with a
uniform tube neighborhood, then the thickness (radius) r of that rope is
≤ R(K), so EL(K) ≤ L

r
. Thus the theorem also holds with L

r
in place of EL.

2 Lemmas on total curvature

The three lemmas in this section establish fundamental properties of smooth
space-curves, relating total curvature to packing, to oscillation relative to
a given point, and to the “illumination” of a given point. We deal in this
section with smooth space-curves, not assuming the curves are simple or
closed; and we make no use of thickness.

To keep the arguments as simple as possible, we assume throughout the
paper that “smooth” means smooth of class C2. For a smooth curve A, we
denote the total curvature of A by κ(A).
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It is intuitively clear that if a long rope is packed in a small box, then the
rope must curve a lot. This fundamental lemma is an important ingredient
in our analysis of the interplay between ropelength, crossing number, and
total curvature.

Lemma 1.1 (Packing and curvature). Suppose A is a smooth connected
curve of length L, contained in a round 3-ball of radius ρ , where L ≥ 3ρ.
Then κ(A) is approximately proportional to at least L/ρ. More precisely,

L ≥ 3ρ =⇒ κ(A) ≥ 1/3 , (1)

and, in general,

κ(A) ≥ 1

3
n , where n is the greatest integer n =

[
1

3

L

ρ

]
.

Saying this without “n”, we have

L

ρ
≤ 9 κ(A) + 3 .

Proof. First consider the case of a smooth connected arc A, of length L ≥ 3
contained in a ball B of radius ρ = 1. We want to show the total curvature
κ(A) ≥ 1

3
.

Let t → x(t) be unit-speed parametrization of A, where x(0) is one end-
point of A and x(L) the other. The fundamental theorem of calculus, applied
first to x(L) and then again to x′(s), says

x(L) = x(0) +

∫ L

s=0

x′(s) ds = x(0) + Lx′(0) +

∫ L

s=0

∫ s

u=0

x′′(u) du ds . (2)

The point x(0)+Lx′(0) lies well outside the ball B, and the vector
∫ L

s=0

∫ s

u=0
x′′(u) du ds

has to be long enough to get back in. Specifically, we must have

L− 2 ≤
∣∣∣∣∫ L

s=0

∫ s

u=0

x′′(u) du ds

∣∣∣∣ ≤
∫ L

s=0

∫ s

u=0

|x′′(u)| du ds (3)

=

∫ L

s=0

κ(A[0,s]) ds <

∫ L

s=0

κ(A) = L · κ(A) . (4)
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Thus

1− 2

L
< κ(A) .

Since L ≥ 3, we have κ(A) > 1− 2
3

.
Next consider the case of a connected arc A of length L ≥ 3ρ contained

in a ball of radius ρ. We want again to prove that κ(A) ≥ 1
3
. Rescale the

problem by multiplying all coordinates by 1/ρ. By the first case, the resulting
arc has total curvature ≥ 1/3. But rescaling does not change total curvature.

Finally, consider the general case. Partition the arc A into n arcs, each
having length ≥ 3ρ, with perhaps one smaller arc left over, and apply the
previous case to each of the n arcs.

Another way that a long curve is forced to have a lot of total curvature is
if its distance from some given point oscillates a great deal. This is captured
in the next lemma.

Lemma 1.2 (Oscillation and curvature). Let Sa, Sb be concentric spheres
with radii a < b. Let A be a smooth curve contained in the spherical shell
bounded by Sa and Sb. Suppose the two endpoints of A lie on Sa and at least
one point of A lies on Sb. Then the total curvature is at least on the order
of 1/

√
a. More precisely,

κ(A) ≥ π − 2 arcsin(a/b) . (5)

If b ≥ a + 1, then

κ(A) >
2
√

2√
a + 1

. (6)

If a ≥ 2, the bound (6), along with simplifying the coefficient, gives

κ(A) >
2√
a

. (7)

Proof. We shall reduce the proof of (5) to a standard trig exercise, and then
calculate (6).

Let p, q be the endpoints of A, z a point of A ∩ Sb, p̄z and z̄q the line
segments from p to z and from z to q, and let P be the two-edge polygon
p̄z ∪ z̄q. Since the polygon P is an inscribed polygon of A, we know from
[11] that κ(A) ≥ κ(P ), so it suffices to establish the desired lower bound
for κ(P ). If either of the edges of P is not tangent to the sphere Sa, we
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can pivot the edge at point z to move the edge to tangency in a way that
opens the angle p̂zq, so reducing κ(P ). Thus, it suffices to prove the lower
bound for tangent two-edge polygons. The three points p, z, q determine a
plane; we wish that plane also would include the center of the spheres. If
not, then (keeping the two edges tangent to Sa, and allowing the points of
tangency and the angle p̂zq to change), rotate the plane of p, z, q (with axis
of rotation the line through z parallel to p̄q) until it does contain the center
of the spheres. This deformation also would increase the angle p̂zq, and so
decrease the total curvature of P . Thus, we are reduced to the situation
where p, z, q and the center of the spheres are coplanar, and P consists of
tangent lines to Sa drawn symmetrically from point z on Sb. We then have
a right-triangle with

sin(
p̂zq

2
) =

a

b
,

which gives (5).
To derive (6), first note that π − 2arcsin (a/b) increases as (b − a) gets

larger. So if we show π − 2arcsin (a/b) ≥ 2
√

2√
a+1

for b = a + 1, then we will
have that inequality for all b ≥ a + 1.

Rewrite (5) in terms of a and b = a + 1,

κ(K) ≥ π − 2 arcsin

(
1− 1

a + 1

)
. (8)

Now let t =
√

1
a+1

and check (analytically or graphically) that

π − 2 arcsin(1− t2) > (2
√

2) t . (9)

In the next lemma, we call the curve Y instead of A, to help clarify how
the lemmas will be used. We prove Lemma 1.3 by applying Lemmas 1.1 and
1.2 to subarcs A of Y .

Suppose Y is a smooth curve in R3, and x0 is a point some finite distance
from Y . The integral ∫

y∈Y

1

|y − x0|2
(10)

can be thought of as measuring the “illumination” of x0 by Y .
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Lemma 1.3 (Illumination and curvature). Suppose Y is a smooth curve
in R3, and x0 is a point such that ∀y ∈ Y , |y−x0| ≥ 2. Then the illumination
of x0 by Y is bounded by the total curvature of Y . More precisely,∫

y∈Y

1

|y − x0|2
≤ c + 66 κ(Y ) , (11)

where c is a universal constant independent of Y .

Lemma 1.3 is perhaps the most intricate part of the paper. Before proving
it, we present four special cases. The general argument does not reduce to
these special cases – rather we include them to give an intuitive sense of why
the proposition might be true (the first three), and some of issues one needs
to confront in building a proof (the fourth).

2.1 Special cases for Lemma 1.3

2.1.1

Suppose Y is a straight line, starting at a point 2 units from x0 and aiming
radially away from x0. Then the line integral is just

∫∞
2

1/s2 ds = 1/2.

2.1.2

Suppose Y is a straight line, infinite in both directions, and tangent to the
sphere of radius 2 centered at x0. Then∫

y∈Y

1

|y − x0|2
=

∫ ∞

−∞

1

4 + s2
ds =

π

2
.

2.1.3

Suppose Y is a polygonal path (or closed curve) consisting of e edges (of
possibly varying lengths), such that each pair of consecutive edges meets at
a right angle. Then, by the second special case, each edge of Y contributes
< π/2 to the illumination integral, so∫

y∈Y

1

|y − x0|2
< e

π

2
= κ(Y ) if the polygon has endpoints

= κ(Y ) + π/2 if the polygon is closed.
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2.1.4

Suppose Y is a smooth curve, starting at a point y0 with |y0 − x0| = 2, with
the property that the distance function |y−x0| is monotone increasing on Y .

For n = 2, 3, . . . , let B[n] denote the round ball of radius n centered at x0,
and let S[n, n + 1] denote the spherical shell with radii n and n + 1. By our
assumption of monotonicity, each intersection Y ∩ S[n, n + 2] is a connected
arc, which we denote Yn. Let `[n, n + 1] denote the arclength of Yn. Then∫

y∈Y

1

|y − x0|2
=

∞∑
n=2

∫
y∈Yn

1

|y − x0|2
≤

∞∑
n=2

`(Yn)

n2
.

We would like to bound all the numbers `(Yn), in terms of total curvature
of Y , somehow using Lemma 1.1. That lemma gives upper bounds for the
lengths `(Y ∩ B[n]) in terms of total curvature. But we cannot go directly
from that to a simple bound on the lengths in the individual shells: For given
curve Y , it is possible to satisfy Lemma 1.1 by having the lengths contained
in inner shells relatively small, and then a lot of Y is packed into some outer
shell. We get around this problem by bounding (not the illumination integral
from Y itself, but rather) the illumination integral of a hypothetical curve Y ∗

that is packed around x0 in such a way as to make the illumination integral
as large as possible subject to the constraints imposed by Lemma 1.1. (In
this intuitive discussion of the special case, we will continue with the image
of a “hypothetical curve”. In the actual proof of Lemma 1.3, we will be more
rigorous.)

For brevity, let κ denote κ(Y ). By our assumptions on the shape of Y
relative to x0, we start with Y2 = Y ∩B[3]. By Lemma 1.1,

`(Y ∩B[3]) ≤ 3(9 κ + 3) .

Similarly,

`(Y ∩B[4]) ≤ 4(9 κ + 3) ,

`(Y ∩B[5]) ≤ 5(9 κ + 3) , etc.

If the curve Y does not actually achieve these bounds, then add extra length
(the “hypothetical” curve) in each of the shells as needed to actually reach
these bounds. Since we are adding length to the Y that already exists, the
illumination integral can only increase. Thus the illumination of Y ∗ is an
upper bound for the illumination of Y .
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We have

`(Y ∗ ∩B[3]) = 3(9 κ + 3) ,

`(Y ∗ ∩B[4]) = 4(9 κ + 3) ,

`(Y ∗ ∩B[5]) = 5(9 κ + 3) , etc.

Thus

`(Y ∗ ∩ S[2, 3]) = 3(9 κ + 3) ,

`(Y ∗ ∩ S[3, 4]) = 4(9 κ + 3) − 3(9 κ + 3) = (9 κ + 3) ,

`(Y ∗ ∩ S[4, 5]) = 5(9 κ + 3) − 4(9 κ + 3) = (9 κ + 3) , etc.

And so,∫
y∈Y

1

|y − x0|2
≤

∫
y∈Y ∗

1

|y − x0|2
<

3(9 κ + 3)

22
+

∞∑
n=3

(9 κ + 3)

n2
< 13κ + 5 .

Proof. (of Lemma 1.3)

3 Proof of Theorem 1

As a preliminary step, rescale the knot so the thickness radius R(K) = 1.
This has no effect on the total curvature or on the average crossing number,
and simplifies the ratio EL(K) to just the length, L. We want to show

acn(K) < c · L · κ(K) , (12)

where c is some coefficient that works for all knots.
The average crossing number of a knot can be expressed as an integral

over the knot [8], similar to Gauss’s double integral formula for the linking
number of two loops. Specifically,

acn(K) =
1

4π

∫
x∈K

∫
y∈K

| < Tx , Ty , x− y > |
|x− y|3

, (13)

where Tx, Ty are the unit tangents at x, y and < u, v, w > is the triple scalar
product (u× v) · w of the three vectors u, v, w.
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Omit the ubiquitous 1
4π

(the first contribution to “c”) and write the in-
tegral as a sum of two terms:

Near(K) =

∫
x∈K

∫
arc(x,y)≤π

| < Tx , Ty , x− y > |
|x− y|3

,

and

Far(K) =

∫
x∈K

∫
arc(x,y)≥π

| < Tx , Ty , x− y > |
|x− y|3

.

We shall analyze these contributions separately, and find bounds of the
form

Near(K) ≤ c1 L (14)

Far(K) ≤ c2 L κ(K) . (15)

In the first case, we obtain a uniform constant bound (independent of
curve K and choice of point x) for the inner integral, so

Near(K) ≤ (L)(that uniform bound) .

In the second case, we obtain a bound for the inner integral of the form

(some uniform constant)(total curvature of K) ,

so
Far(K) ≤ (L)(that uniform constant) · κ(K) .

3.1 Bounding Near(K)

Proof. We shall show that the inner integral is uniformly bounded, indepen-
dent of K.

For any smooth curve with thickness radius R, it is shown in [9] that the
curvature at each point is at most 1/R. So in the present situation, we know
that the curvature of K is everywhere ≤ 1.

Let θ → x(θ) be a unit speed parametrization of K. So x′(θ) = Tx and
|x′′(θ)| ≤ 1. We are studying points y for which arc(x, y) ≤ π, so we can take
for the parameter set the interval [0, π], with our starting point x = x(0) and
y = y(θ) for some θ ∈ [0, π]. Using the same parameter set, let θ → p(θ)
be an arclength preserving parametrization of the unit semi-circle. Since the
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curvature of K is everywhere bounded by the curvature of the unit circle,
Schur’s theorem [5] tells us that for each θ,

|x(θ)− x(0)| ≥ |p(θ)− p(0)| , (16)

That is,
|y − x| ≥

√
2− 2 cos θ . (17)

Thus

| < Tx , Ty , x− y > |
|x− y|3

≤
| < Tx , Ty , x−y

|x−y| > |
2− 2 cos θ

(18)

=
| < Tx , Ty , x−y

θ
> |

2− 2 cos θ

θ

|x− y|
(19)

Using Schur’s theorem again, we have |x− y| ≥ |p(θ)− p(0)| =
√

2− 2 cos θ.
The function θ√

2−2 cos θ
is increasing on [0, π], with maximum value π/2. So

| < Tx , Ty , x− y > |
|x− y|3

≤ π

2

| < Tx , Ty , x−y
θ

> |
2− 2 cos θ

. (20)

The vectors Ty and x−y
θ

are each first-order (in terms of θ) close to Tx. Specif-
ically, we have for Ty,

Ty = Tx +

∫ θ

t=0

x′′(t) . (21)

Since |x′′| ≤ 1, this says we can write Ty as Tx+V , where |V | ≤ θ. Meanwhile,

(2) says we can write |x−y|
θ

as Tx + W , where |W | ≤ 1
2
θ. Thus

Tx × Ty = Tx × V ,

a vector perpendicular to Tx with length ≤ θ. When we take the dot product
of this vector with Tx +W , we just get the dot product with W , so a number
whose size is at most 1

2
θ2.

We now have

| < Tx , Ty , x− y > |
|x− y|3

≤ π

4

θ2

2− 2 cos θ
≤ π

4

(π

2

)2

, (22)

so the inner integral is bounded by (2π) · (π
4
) · (π

2
)2, since the points y run

from (what we might denote as) x− π to x + π.
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3.2 Bounding Far(K)

3.2.1 Introduction

As in the previous case, we shall bound the inner integral,∫
arc(x,y)≥π

| < Tx , Ty , x− y > |
|x− y|3

,

then multiply by L to bound the double integral. We seek a bound of the
form (constant independent of K) · (total curvature of K).

As before, we write the integrand as the triple product of three unit
vectors, divided by |x− y|2. Since the numerator has magnitude at most 1,
it suffices to bound ∫

arc(x,y)≥π

1

|x− y|2
.

For any smooth curve with thickness radius R, it is shown in [9] that
points x, y with arc(x, y) ≥ πR must have |x− y| ≥ 2R. So in our situaton,
when arc(x, y) ≥ π, we know |x− y| ≥ 2. The proof will then proceed along
the following lines: We ask how much length of K can lie within 2 to 3 units
of point x? within 3 to 4? etc. From Lemma 1.1, the answer has something
to do with the total curvature of K. If the part of K that lies in a given
spherical shell about x were connected, we could apply the lemma directly.
However, we expect K to oscillate, go far from x, then back closer, then
farther, etc. We will use Lemma 1.2 to account for this, though we need
some extra complications to properly handle small oscillations. We would
like to know that the total length of K that lies in each spherical shell about
x with radii [n, n+1] is at most proportional to

√
n (where the constant of

proportionality will have a factor κ(K)). If that were guaranteed, we would
have a bound of the form∫

arc(x,y)≥π

1

|x− y|2
≤ (universal constant) · κ(K) ·

∞∑
n=2

√
n

n2
.

But a given knot K might not have such uniformity from shell to shell.
We need to take a more indirect route: We first bound the total length of
K that can lie in any ball of given radius n about x. We then find an upper
bound for the sum ∑ length in shell [n, n + 1]

n2
(23)
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by comparing the actual spatial distribution of length of K relative to x to
a hypothetical distribution that would maximize this sum.

3.2.2 Notation

Let Y denote the smooth curve {y ∈ K | arc(x, y) ≥ π}. This is the domain
of integration for the inner integral of Far(K). For any a > 0, let Sa denote
the sphere about x of radius a, and for a < b, let S[a, b] denote the spherical
shell bounded by Sa and Sb.

3.2.3 Cut Y into small pieces

We want to bound the measure of each set Y ∩ S[n, n + 1], n = 2, 3, . . .∞.
Our task is complicated by the fact that Y ∩S[n, n + 1] typically will not be
connected, and may involve a large number of short components. To handle
this, we discretize the problem and use a counting argument to provide the
desired bounds.

Pick any integer M > arc length of Y , and cut Y into M consecutive
arcs of equal length. Let ε denote the length of each sub-arc, and note
ε < 1. The particular value of M will not matter for our analysis; we end up
bounding infinite sums. What matters is that each arc is shorter than the
distance between consecutive spheres, and yet a string of many (relative to
epsilon) such arcs represents a guaranteed amount of length of Y .

We assign to each arc Yi a label 1, 2, 3, . . . representing approximately the
shell S[n, n+1] that contains Yi. Specifically, if Yi ⊂ S[n, n+1], assign label
n. If Yi is not entirely contained in one shell, then it must intersect a sphere
S[n]. Because ε < 1, an arc Yi can intersect at most one sphere S[n], and
we assign that label n to the arc. Note that if an arc Yi carries label n, then
Yi ⊂ S[n, n + 1 + ε] and Yi ∩ S[n, n + 1] 6= ∅.

3.2.4 Discretize the problem

For each integer n, let φ(n) denote the total number of arcs Yi that are labeled
n. Thus ∫

Y

1

|x− y|2
=

∑
i

∫
Yi

1

|x− y|2
≤

∑
n

φ(n)
ε

n2
. (24)

We would like to say that the numbers φ(n) are bounded by something on
the order of κ(K)(1/ε)

√
n . This is not quite true, however, since, for a given
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knot K, and particular n, the value of φ(n) can be very large. But we shall
construct an upper bound for the whole sum in (24) in which the summands
are more predictable. To do this, we need the auxiliary function that counts
the total number of arcs that are labeled between 2 and n. Define

Φ(n) =
n∑

j=2

φ(j) . (25)

We proceed as follows:

1. Abstract the arc Y as the string of integers L =< a1, a2, . . . , am >,
where ai is the shell label of Yi.

2. Use the bound κ(K) on total curvature of Y to determine constraints
on the symbol string L that ultimately give bounds on the values Φ(n).

3. Note that the functions φ and Φ make sense for any string L of m
integers

4. For any finite string L of integers, define an “energy”

E(L) =
∑

φ(n)
ε

n2
. (26)

5. Consider all strings L that satisfy the constraints on Φ determined by
our Y . Maximize E(L) over this set of strings by finding a string L∗
for which the energy is maximum.

6. Find a bound for the value E(L∗), which is an upper bound for the
final sum in (24), of the form we want.

The first step is to translate the curvature bound for Y into constraints
on L, the string of symbols. To shorten formulas, use κ to denote κ(K).

For each n, there cannot be too many consecutive symbols ≤ n. A string
of q consecutive symbols ≤ n represents a connected arc A ⊂ Y of length qε
contained in the ball S[0, n + 1 + ε]. If q is such that qε ≥ 3(n + 1 + ε), then,
by Lemma 1.1, κ(A) ≥ 1/3. Thus, for such q, we can have no more than 3κ
such strings. So the first constraint is:

• For each n, the string L contains at most 3κ pairwise disjoint substrings
of length 3(n+1+ε)

ε
consisting of integers ≤ n.
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We obtain a second constraint, this time on “jumps”. If, in the string
L, we observe the sequence 〈. . . n . . . n + 1 . . . n . . .〉, we cannot infer any
particular curvature contribution. But if we see 〈. . . n . . . n+2 . . . n . . .〉, then
we can. Let us call a substring 〈n . . . n + 2 . . . n〉 of L a jump at level n.

An arc Yi with label n has nonempty intersection with S[n, n+1]; an arc
with label n+2 is contained in S[n+2, n+3+ ε]. Thus if L includes a jump
at level n, then we can infer the existence of a subarc A of Y (the closure of a
component of Y ∩ S(n + 1,∞)) that starts at the sphere S[n+1] and reaches
as far out as some S[b], b ≥ n + 2, before heading back to end at S[n + 1].
By picking an “innermost” such arc, we can ensure precisely the situation of
an arc contained in S[n+1, b] that has both of its endpoints on S[n+1] and
some interior point on S[b], where b ≥ n + 2. By Lemma 1.2, such an arc
contributes more than 1.2 1√

n+1
to total curvature. Thus we have our second

constraint:

• For each n, the string L cannot have 1
1.2

κ
√

n + 1 pairwise disjoint
jumps of level n.

3.2.5 Count and complete the proof

We now combine the constraints on substrings and jumps in L to get bounds
on Φ(n).

Proposition 1.1. For each n ≥ 2,

Φ(n) < 24
κ

ε
n3/2. (27)

Proof. Suppose, to the contrary, that for some n, L does have that many
symbols 2, 3, . . . , n. The bound 24n3/2 was chosen to be a simple expression
such that, for n ≥ 2 and ε < 1,

24n3/2 >

(
3 +

1

1.2

√
n + 1

)
(3(n + 2 + ε)) . (28)

Note we are using (n + 2 + ε), which comes from the first constraint for
n + 1, not for n. This is connected to our definition of “jump at level n”.

Visualize the string L so that, temporarily, only the symbols 2, 3, . . . , n
are visible. Parse these into pairwise disjoint substrings of length 3(n+2+ε)

ε
.

By assumption, we have (considerably) more than 3κ of these substrings. So
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in the actual string L, a number of these substrings must get broken up by
inserted symbols ≥ n + 1. Now make all the symbols ai = n + 1 in L visible
as well. These certainly can break up substrings consisting only of symbols
2, 3, . . . , n, but they offer no improvement on our situation of exceeding the
total curvature bound: we chose the lengths of the substrings to be long
enough that even if they were made from symbols 2, 3, . . . , n+1, they would
still each be contributing ≥ (1/3) to total curvature, so we cannot have more
than 3κ of these. Thus we must have some symbols ≥ n + 1 in the original
string L to break up a number of the “offending” substrings. How many of
the substrings can be broken by inserting symbols aj ≥ n+2? Each offending
substring that gets broken this way represents at least one jump at level n. So
we must have have fewer than 1

1.2
κ
√

n + 1 such interruptions. But we chose
the original number of symbols 2, 3, . . . , n large enough that the number of
offending substrings is greater than the number of possible interruptions plus
the maxumum number we could tolerate to be uninterrupted. We conclude
that Φ(n) cannot be that large.

We have completed Step 2 of our plan, and now proceed. The functions
φ and Φ make sense for finite abstract strings L:

φ(n) = number of symbols ai of L that are = n ; (29)

Φ(n) =
∑n

j=2 φ(j) , (30)

and we can define the “energy”

E(L) =
∑

φ(n)
ε

n2
. (31)

The maximum shell label occurring in the string L associated to Y cer-
tainly is less than the total number of subarcs, M . Consider the set S of
all abstract strings of integers 2, 3, . . . ,M for which the functions Φ satisfy
Proposition 1.1. We shall find a bound for the maximum of E(L) over all
L ∈ S , so this bound also will be a bound for the integral over Y in the
inequality (24). The method is to construct an abstract string L∗ that satis-
fies the constraint (27), so it is an element of S, and has maximum possible
E(L).

If we take a string in S and change some symbol ai to a lower integer, that
increases E(L). Also, if we introduce a new additional symbol aj somewhere
in L, that increases E(L). We cannot do this too much, since the resulting
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string would no longer lie in S. We construct the desired L∗ by having each
φ(n) be maximum, starting from n = 2 and working up.

For n = 2, Proposition 1.1 says Φ(2) < 24 κ
ε
23/2. Since φ(2) = Φ(2), we

start L∗ with exactly the maximum allowable number of 2’s, that is

φ(2) = greatest integer less than 24
κ

ε
23/2. (32)

To keep the calculations simpler, we will use the bounds themselves, rather
than the “greatest integer less than”. This changes the ultimate coefficient
in our theorem, but not the basic structure, in particular the exponents.

Proposition 1.1 next says that Φ(3) < 24 κ
ε
33/2. But Φ(3) = Φ(2) + φ(3).

Having forced Φ(2) as above, we now make Φ(3) the maximum possible by
choosing

φ(3) = 24
κ

ε
33/2 − 24

κ

ε
23/2. (33)

Continuing inductively, we construct the string L∗ so that for each n =
2, 3, . . . ,M ,

φ(n) = 24
κ

ε
n3/2 − 24

κ

ε
(n− 1)3/2. (34)

We have now completed steps 1-5 of our plan, and just need to bound
the energy E(L∗). We do this via the infinite sum, where M →∞.

Proposition 1.2.

∞∑
n=2

(
ε

n2
)
(
24

κ

ε
n3/2 − 24

κ

ε
(n− 1)3/2

)
≤ 66 κ . (35)

Proof. Cancel the ε’s and factor out the common κ and coefficient 24 The
resulting function,

f(n) =
n3/2 − (n− 1)3/2

n2
(36)

is summable over n = 2 . . .∞; the sum is less than the integral∫ ∞

x=1

x3/2 − (x− 1)3/2

x2
=

3

2
π − 2 . (37)

Multiplying this by 24, we get a constant < 66.

This completes the final step of our plan, and the proof of Theorem 1.

17



References

[1] G. Buck, Four-thirds power law for knots and links, Nature, 392 (1998),
pp. 238–239.

[2] G. Buck and J. Simon, Energy and length of knots, in Lectures at
KNOTS ’96 (Tokyo), World Sci. Publishing, River Edge, NJ, 1997,
pp. 219–234.

[3] , Thickness and crossing number of knots, Topology Appl., 91
(1999), pp. 245–257.

[4] J. Cantarella, R. Kusner, and J. Sullivan, Tight knot values
deviate from linear relations, Nature, 392 (1998), pp. 237–238.

[5] S. S. Chern, Curves and surfaces in Euclidean space, in Studies in
Global Geometry and Analysis, Math. Assoc. Amer. (distributed by
Prentice-Hall, Englewood Cliffs, N.J.), 1967, pp. 16–56.

[6] I. Fary, Sur la courbure totale d’une courbe gauche faisant un noeud,
Bull. Soc. Math. France, 77 (1949), pp. 128–138.

[7] R. H. Fox, On the total curvature of some tame knots, Ann. of Math.
(2), 52 (1950), pp. 258–260.

[8] M. H. Freedman, Z.-X. He, and Z. Wang, Möbius energy of knots
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