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Accessibility and occlusion of biopolymers, ray tracing of radiating tubes,
and the temperature of a tangle
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We introduce a measure of complexity, an energy, for any conformation of filaments. It is the occlusion, the
portion hidden when viewed from an arbitrary exterior point. By inverting we get the exposure, a first approxi-
mation of the accessibility of the filaments. Assuming the filament is a source, we get the self-irradiation,
which leads to both an interpretation as the temperature and a visualization technique: ray tracing as a virtual

laboratory. There is a wide variety of applications, from enzyme action on and radiation damage of biopoly-

mers, to the geometry of light bulb filaments. Energy minimization provides automatic detangling, resulting in

symmetric and pleasing conformations.
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I. INTRODUCTION

There are many scientific reasons for studying the geo-
metric and topological qualities of arrangements of filaments
in three dimensions. To give an idea of the breadth of appli-
cations we mention just two. First, topology has become a
fundamental tool in the study of the dynamics of polymers in
general and of that most important polymer, DNA, in the
specific. Second, at a considerably different scale, the topol-
ogy of magnetic flux tubes in the solar corona is an important
factor in solar dynamics. A natural conception is that of the
complexity of the arrangement—we think of a single linear
filament as simple or low energy, while a tangled ball of a
filament or filaments is complex or high energy [1-9].

II. DERIVATION OF E(K)

We begin with the radiating tube interpretation, and derive
the others from it. By the cosine law of radiation, the self-
radiation of a radiating tube T is given by

o(T) = 1/4 f f (dA sin a)(dB sin B)/p*.

Here dA,dB are area elements for the surface of the tube and
af3 are the angles the separation vector makes with the sur-
face of the tube (this is the cosine law—we are using the sine
of the complementary angle). This formula makes sense for
any non-self-intersecting tube. For a relatively thin tube,
which is relatively far from self-intersection, it is natural to
suppose that the self-radiation of the filament (a surface to
surface integral) can be approximated by a double integral
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over the center curve K of the tube (a curve to curve inte-
gral). Let C(x) denote a cylinder element about the point x
that is a section of 7 of small but nonzero length. Then we
consider the interaction between C(x) and C(y). (See Fig. 1.)
First we note that if we consider C(x) to be a point source,
then the effect on C(y) depends approximately on the angle
the line element dy makes with r=(x—y)/|x—y|, since this
determines the solid angle subtended by C(y). On the other
hand, C(x) is not a point source, but emits through the cy-
lindrical surface. The cosine law dictates that the intensity of
the emission depends approximately on |dy Xr|. Of course,
the surface area of the tube depends on the radius R of the
tube, so we expect that o(T)=f(R)E(K), where the leading
term in the coefficient function f(R) is R?, and

FIG. 1. (Color online) Tube geometry. Let the upper cylinder
(red exterior in color image) be the tube element C(x), the lower
(blue) C(y). The thin connecting cylinder between C(x) and C(y) is
the separation vector r. [In the color image C(x) is a source of blue
light, which is why C(y) is blue, as is the interior of C(x). The
exterior of C(x) is red because it is reflecting the red light emanat-
ing from C(y)].
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E(K)= l/47'rff |dx Xr||dy Xr|/p*.
KXK

E(K) is our measure. We have done some preliminary nu-
merics on simple cases and found what we would expect:
That the surface integral does become proportional to this
line integral in the limit as the radius of the tube shrinks.
Formal numerics and estimates of the “error” engendered by
using the line integral will be the object of further study.
Now let C(x) and C(y) be sufficiently far apart, and again
let C(x) be a point. Then how much C(y) tends to obscure
C(x) depends on its orientation with respect to C(x). [If the
angle between dy and r is zero, then to first approximation
the surface of C(y) does not obscure C(x) at all—from a
viewpoint along r [“behind” C(y)], one sees C(x) through the
center of C(y).] On the other hand, since C(x) is in fact a
cylinder, how much of the surface of C(x) is occluded by
C(y) also depends on the angle between dx and r—again, if
this angle is zero then none of the surface of C(x) is oc-
cluded. Note that this is a directional occlusion—a patch
blocked from an oblique angle has a lesser contribution.The
exposure of a linear tube is proportional to LR, where L is
the length of the tube, so the exposure of an arbitrary con-
formation is proportional to mLR—f(R)E(K) (m being a con-
stant). Now imagine a filament requiring an agent to act at a
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FIG. 2. Occlusion and accessibility as the “inverse” of self-
radiation and temperature. 2A (self-radiation) was created via ray-
tracing. 2B is simply the inverse image via Photoshop, and acces-
sible regions are light colored, occluded ones are “shadowed.” This
illustration was suggested by Felice Frankel.

FIG. 3. (Color online) Simplification of complex conformations to canonical forms by the gradient flow of E.
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FIG. 4. (Color online) Apparent energy minimums for some simple knot and link types.

particular site or sites. Then it is reasonable to suppose that
the ease which the agent can act depends on how exposed or
obscured the site is from an average viewpoint—if the ar-
rangement is complex, it may be more difficult (take longer)
for the agent to reach interior sites. One can think of the
exposure as the sum of the straight line paths from a large
sphere enclosing the filamentary molecule to sites on the
filament, and so it is a reasonable first approximation of ac-
cessibility. The “inverse” relationship between occlusion and
exposure (self-irradiation) is easy to illustrate graphically.
See Fig. 2.

III. APPLICATIONS IN BIOLOGY

Radiation damage is of central importance in DNA dy-
namics, as it can create mutations and terminate replication.
It is plausible that regions with greater exposure in packings
would undergo more mutations (so are less conserved) than
those with less exposure. So we might expect a correlation
between conservation and exposure at a point along the DNA
strand [the interior integral of E(K)]. This would help expli-
cate the design and role of chromatin [10,11].

Furthermore, during replication the strand needs to be ex-
posed or accessible at the replication fork in order to build
the base pairs. So as replication proceeds E(K) is locally
decreased along the strand, then increased as the strands are
packed.

The detangling of DNA daughter strands that is necessary
for cell division is accomplished by the topoisomerase en-
zymes. In particular, type 2 topoisomerase passes one double
helix though another. If the strands are tightly packed, and so
have high E, this procedure is as likely to increase entangle-
ment as to decrease it. And so we expect topoisomerase type
2 to be most effective in detangling in low E conformations.
Moreover, the enzyme itself is rather large, and so the speed

at which it can search for sites to act upon may be restricted
by the accessibility [12—14].

There has been considerable progress made in modeling
enzyme search patterns in general. Enzymes may employ
sliding along the strands, or jumping from strand to strand or
combinations of techniques. The relative efficiencies of the
strategies depend in general on a geometric factor of the
conformation that measures the accessibility. In this case
greater occlusion means that it is easier for an enzyme to find
another strand nearby, so jumping from strand to strand is
good strategy [15,16].

IV. APPLICATIONS IN PHYSICS

Imagine two tubes of equal length and radius, made of
perfect conductors. They are heated, in a vacuum, to some
specific temperature, and then allowed to cool. If one tube is
a linear tube, and the second a complex arrangement, then
we would naturally expect the linear tube to have a faster
rate of cooling—conversely we wrap our arms around our-
selves to keep warm. Now let the conformation be a filament
in which thermal energy is produced at a fixed rate, as in the
case of a 60 W light bulb in which electrical energy is con-
verted into thermal energy at a rate of 60 J/s. Upon reaching
thermal equilibrium, such a filament radiates energy into
space at the same fixed rate. In the case of a complex knot, as
compared to a simple knot, much of the energy radiated by
the filament is redeposited in the filament as a result of self-
irradiation. In order to radiate energy into space at the pre-
scribed rate, each unit area of the filament must radiate en-
ergy at a greater rate than it would in the case of a simple
knot. To do so, the filament must be at a higher temperature.
Heuristically, one way to approach this is to say that increas-
ing the complexity of the conformation in a sense reduces
the effective surface area—for example if the complexity is
high enough one could imagine stations near the center of
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the conformation which have no direct line path reaching the
exterior. So, on average, more energy has to emanate from
each unit of surface. Designers of incandescent light bulb
filament geometries take care to avoid ‘“hotspots”—places
where the filament is too close to itself—uneven distribution
of heat creates weak spots. So a good geometry has high £
from compactness but equidistribution of the self-irradiation.
Helices have this property and are the most common design.
Compact fluorescent bulbs have similar design requirements
and also employ helices.

V. VISUALIZATION AND CALCULATION

To visualize E(K), we use the computer graphics tech-
nique of ray-tracing, which mimics the basic laws of light, as
a virtual laboratory. In ray-tracing, the image is created by
following the idealized paths of light rays as they impinge on
the three dimensional scene. The technique can result in re-
alistic appearing images, since it can model complicated phe-
nomena such as reflection, diffusion, and opacity of surfaces.
In Fig. 1, the light source is distributed along the center
curve of the knot, and the tube is a light filter (like frosted
glass) so that the surface both emits and reflects. Therefore,
the intensity of the reflected light represents the energy: The
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FIG. 5. Symmetry of figure 8
canonical conformation (energy
minimum). Symmetry of 8; en-
ergy minimum. These are rigidly
achiral knots—they are topologi-
cally equivalent to their mirror im-
ages, and this is shown by rigid
rotations of the  canonical
conformations.

more complicated knot is brighter. Note that this technique is
not a coloring scheme, it is an embodiment of the radiation
interpretation of the energy. The technique is in some sense
“proved” by watching the gradient descent evolutions—the
conformations become dimmer as they simplify. See Fig. 2.
The surface of the tube has differential brightness: Near self-
crossings are brightly illuminated, strands with low curvature
far removed from other strands are barely illuminated (a
simple linear cylinder has zero energy). With links, we can
use different color lights to demonstrate the effect of one link
upon itself and another. In general, we can read off complex-
ity from the overall intensity of the conformation. This visu-
alization technique can likely be applied to other problems,
in particular to models of surface accessibility of surfaces of
arbitrary shape. So it could be used in several aspects of
molecular analysis.

Both E(K) and its gradient are relatively easy to compute
(approximate) numerically. We have conducted many nu-
merical experiments, on many knot and link types, beginning
with many different initial conformations. The experiments
were conducted on Silicon Graphics computers, utilizing the
software KnotPlot (9—software written by one of the
authors—Scharein).

As with other inverse distance knot energies, simple gra-
dient descent seems to be almost unreasonably effective in
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simplifying high energy (complicated) initial conformations
[9,17]. In fact each prime knot type seems to have just one
(global) minimum energy conformation; no local minima
have been found. See Fig. 3. In fact, we issue a general
challenge: Find a prime knot conformation that is not carried
to a global minimum by the gradient (for reasons other than
simple computational complexity). Computing E is an N>
computation, where N is the number of edges in the polygo-
nal approximation of the curve, so entanglements of consid-
erable complexity are tractable.

The minimum energy conformations have various sym-
metries (see Fig. 4). Some of these are subtler than one might
expect. For example, the minimal conformation of the figure
eight knot, one of the relatively rare achiral knots, reveals the
achirality: A rigid rotation of the conformation and the mirror
image of the conformation can be superimposed. This is also
the case with minimum energy conformation of the knot
known as 83, another achiral knot. (See Fig. 5).

Galleries of images and animations are in Ref. [22]. The
software KnotPlot is available in Ref. [23].

VI. E(K) AND OTHER MEASURES
OF CONFORMATIONAL COMPLEXITY

Elsewhere we have established the fundamental relation-
ship of inverse square measures on curves, such as the writhe
and the average crossing number to other elementary mea-
sures of complexity, such as the crossing number and the
rope length of the conformation [1-4]. E is an inverse square
measure, so has this relationship. The average crossing num-
ber is a modification of Gauss’s linking number [5]. It mea-
sures how much, on average, the filament appears to cross
itself from an arbitrary viewpoint (in a given conformation).
We note that the average crossing number (ACN) cannot be
used as an energy in our sense, it is finite on self-intersecting
curves and therefore conformations may change knot type
under gradient flow.

It is straightforward to show that E bounds the ACN; see
[1,4]. Since the ACN, being an average, bounds the crossing
number of a knot or link (the minimal number of crossings
required in a planar diagram of the topological type), E
bounds the crossing number as well. Grassberger [21] put
forward that the ACN measures what he termed opacity—
distinguishing this from entanglement, since it is certainly
possible to have high ACN and no entanglement. The ACN
can be looked at as an upper bound on entanglement. Under
this interpretation the self-radiation (the “inverse” of the oc-
clusion) bounds, but is not equal to, the opacity.

The ropelength is the shortest length of a unit radius tube
that can realize a topological type. We have shown [4] that
11 rope length (K)**=E(K), and that the exponent in this
bound cannot be improved.

The bound on the ACN allows us to relate E(K) to physi-
cal measures arising from field considerations. [Note that
three-dimensional field quantities are often not amenable to
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FIG. 6. (Color online) Ray-traced radiating tube pictures, in-
cluding a coil conformation like a light bulb filament. In the multi-
colored images, each component (closed loop) radiates a different
color light.

numerical approximation because of the size of the compu-
tations, but E(K) is.] The helicity of a vector field, a con-
struction due to Moffat, is given by H=[,A*B dV, where B
is the vector field, A is a vector potential, and D is the region
containing B (say a flux tube). In the case where the flux
tubes have circular cross section of constant radius and the
field is twist free, it has been shown that helicity
=flux? writhe(K), where K is the center curve of the tube
[see [18,19]; a rigorous proof appears in [20]]. But the writhe
is bounded by the ACN, so in this case we have that E
= helicity/ flux?.

As a fundamental measure of the three-dimensional con-
formational complexity of filaments, E(K) has three attrac-
tive qualities: It is defined as an integral over the curve (and
so is amenable to computation), is singular on self-
intersecting knots (and so separates knot types by infinite
potential walls), and it has real biological and physical inter-
pretations.
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