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bounded above and below across each fami-
ly. No p<3/4 can work, because C A and
there is a universal lower bound12 for L/A3/4.
Furthermore, rope-length minimizers in a
family with L~C3/4 must satisfy C~A; thus
these tight curves have L~A3/4.

Any knot or link arises from a ‘braid’, a
collection of N ascending arcs in a cylinder
Z, joining N points on the bottom of Z to
the same N points on the top. Z is bent into
a solid torus S, the top and bottom disks are
identified, and the arcs are joined to give a
link in S. For a braid with bounds on its
slope, curvature and horizontal strand
separation, this bending fixes rope length
within a uniform factor (depending on the
shape of Z and S).

For a family of N-component Hopf links
with L~C 3/4, we took a cylinder Z of height
h and radius r. N points are distributed on
the bottom disk of Z, and rotated one full
turn as they ascend. The resulting braid
(Fig. 1a) has N helical strands of bounded
slope and curvature, provided h≈r; to sepa-
rate strands, we needed r~N1/2. Thus the
braid (and the corresponding link, Fig. 1b)
has rope length L~hN~N3/2. As each com-
ponent links every other component exactly
once, C/N(N–1); the standard projection
has N(N–1)crossings, so C = N(N–1)~N 2.

For (N,N–1)-torus knots in S with L~
C 3/4, we repeated this construction in the
lower half of Z. To define the rest of the
braid, we chose a circuit joining the N
points (Fig. 1c) and slid each point along
this circuit to the next while ascending
through the upper half of Z. The horizontal
distance a point travels is comparable to, at
most, r. So, as before, we needed
h~r~N1/2and rope length L~N 3/2. The mini-
mum crossing number of this knot15 is
C=N(N–2)~N 2. (Lattice knots with the
same growth of crossing number have been
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Four-thirds power law
for knots and links

Physical knot theory has recently been
applied to polymer dynamics, and specifi-
cally to gel electrophoresis of DNA1,2. Knot
energies3–6 measure the complexity of a
knot conformation; minimum energy con-
formations are considered canonical or
‘ideal’ conformations. The rope length of a
knot is one such measure of energy6, and
an approximately linear relationship
between rope length and the average cross-
ing number for minimum rope-length con-
formations of simple knots has been
reported7. Here I show that a linear rela-
tionship cannot hold in general: the rope
length required to tie an N-crossing knot or
link varies at least between ~N3/4 and ~N.

Consider four measures of knot confor-
mation complexity. Imagine a solid disc of
radius R centred at x and normal to K at
each point x along the parametrized
smooth knot K. R(K) is the largest R so that
the disks are disjointed. The rope length is
L(K)=[arclength(K)]/[R(K)]. The crossing
number C(K) of the knot-type K is the nec-
essary number of crossings in the planar
diagram of K.

For points x,y on K, let r denote |x–y|, r
the vector (x–y)/|x–y|, and dx a line element
of K. The average crossing number is given
by 

A(K)=(1/4p)∫∫(|[dx,dy,r]|)/r2

K2K

where the integrand numerator is the posi-
tive triple scalar product of the three vec-
tors. This integral gives the average number
of crossings of K, when viewed from an
arbitrary perspective. The symmetric ener-
gy3 is given by

S(K)=∫∫(|dx2r||dy2r|)/r2

K2K

If K is the centre curve of a radiating tube,
T, with relatively small radius, which is rela-
tively far from self-intersection, then S(K)
measures the self-radiation of the tube.

A natural 4/3 power law relates rope
length to measures based on inverse-square
laws (including the crossing and writhe
numbers, and S(K)), and a linear bound
relates S(K) to A. We can show4,17 that 

11L(K)4/3/S(K)/4pA(K)/C(K)

Imagine a very long piece of rope packed
as tightly as possible in a roughly spherical
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found independently16.) Many further fami-
lies of links can be thus constructed11.

If we plot C versus L on a log–log scale
(Fig. 1d), then links in any family with L~Cp

approach the ray of slope p. We have seen
examples with p=3/4 (sublinear growth). To
get p=1 (linear growth), consider simply
linked chains of N components, for which
L=2pN+2(N–2), whereas C=2(N–1) (ref.
11). Combining these examples yields fami-
lies of links with any 3/4 p 1.

It is unknown whether any family has
superlinear growth. But if links with split,
unknotted components are excluded, an
argument based on embedding planar pro-
jections11 shows that no family has growth
p>2.
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FFiigguurree  11  Construction for
links with rope length L
growing as the 3/4
power of crossing num-
ber C. aa, This ‘braid’ has
seven helical strands,
one hidden in the cen-
tre. bb, The braid can be
bent into this Hopf link.
cc, The construction can
be modified by following
this circuit to produce a
torus knot instead. dd,
The general relation
between crossings and
rope length when
viewed at large scale:
for any family of links,
the growth rate must lie
between powers 3/4
and 2, and all powers
below 1 are realized.
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shape, scaled so that R(K)=1, with total
length L. The inverse-square ‘energy’ (S(K),
A, writhe, and so on) can be estimated by
assuming the ‘mass’ of the knot is concen-
trated at points p on the integer lattice. Con-
centric shells of unit thickness about each p
each contribute the same amount, so the
contribution for p is that constant multiplied
by the number of shells, which is of the order
of L1/3. Multiplying by the number of points,
L, gives L4/3. The proof that S(K) linearly
bounds A is simple vector geometry.

The 4/3 exponent is sharp. Consider the
Hopf link of two tori in its natural geo-
metrical position. Fill each torus with N
loops parallel to the centre curve, each loop
a strand of radius 1 (Fig. 1a). Then with any
tight packing of the loops, the minor radii of
the tori is of the order of √N. The conforma-
tion fits inside a sphere of radius 4√N, so the
total rope length is about N3/2. Each loop is
linked with N loops in the perpendicular
torus, so the crossing number is about N2.
Therefore the rope length is of the order of
C(K)3/4. Because 11L(K)4/3/4πA(K)/C(K),
this example has A in the order of L(K)4/3.

The minimum rope length for a knot is
bounded by 3C(K)2. This can be seen by
arranging the knot so that the crossings are
evenly spaced along a line (Fig. 1d). For the
simpler knot types, L(K), S(K) and A in
minimized conformations all ‘appear’ to be

linearly related7. An explanation is that the
simpler conformations are ‘planar’: from
most perspectives a unit arc of the knot
crosses only a few other unit arcs.

As complexity increases, there are many
families of knots and links with three-
dimensional growth, exhibiting the 4/3
power law. Families with single-dimension-
al growth (Fig. 1b,c) have a linear relation-
ship among the measures. With planar
growth, we expect A to be linear with C(K)
and S(K) to be of the order of  L(K)logL(K).

We propose that the rope length
required (Fig. 1e–i) to tie an N-crossing
knot or link varies only between k1N

3/4 and
k2N. Other investigators have also recently
observed the 4/3 law in knots on the cubic
lattice9 and in vector fields10.

A good knot energy has only a finite
number of knot types realized below any
given energy level. Our theorem gives us
this property for L(K) and S(K), proving
that there is a finite number of knots that
can be tied with a finite length of mathe-
matical rope. 
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Heartbeat synchronized
with ventilation

It is widely accepted that cardiac and respi-
ratory rhythms in humans are unsynchro-
nised1. However, a newly developed data
analysis technique allows any interaction
that does occur in even weakly coupled
complex systems to be observed. Using this
technique, we found long periods of hidden
cardiorespiratory synchronization, lasting
up to 20 minutes, during spontaneous
breathing at rest. 

Synchronization is a universal phenom-
enon that occurs when two or more non-
linear oscillators are coupled. It is observed
in many fields of science and is widely
applied in engineering. The case of syn-
chronisation in periodic, or even noisy,
oscillators is well understood2–4. The
notion of synchronization has often been
used to analyse the interaction between
physiological (sub)systems1, but these
studies have been restricted to almost peri-
odic rhythms. No approach has been sug-
gested to probe the weak interactions
between such irregular and non-stationary
oscillators as the human heart and respira-
tory system. 

These two physiological systems are
known to be coupled by several mecha-
nisms, but apart from respiratory modula-
tion of heart rate, first observed in 1847 and
known as ‘respiratory sinus arrhythmia’
(RSA)5–7, no other effects have been report-
ed. Moreover, in spite of some early com-
munications8, it has been concluded that
“there is comparatively weak coupling
between respiration and the cardiac
rhythm, and the resulting rhythms are gen-
erally not phase locked”1. 

We used the concept of phase syn-
chronization of chaotic oscillators9,10 to
develop a technique to analyse irregular
non-stationary bivariate data. We analysed
data obtained in non-invasive examina-
tions of eight healthy volunteers (14–17-
year-old, high-performance swimmers;
four of them male and four female). While
subjects lay at rest, electrocardiograms
(ECGs) were recorded while respiratory

scientific correspondence

NATURE | VOL 392 | 19 MARCH 1998 239

FFiigguurree  11 Knot conforma-
tions. aa, Packed Hopf tori. bb,
L̀inear’ conformations. Left,
a product of trefoils; right, a
thick chain with a linear
relationship between cross-
ing number and rope
length. The chain also
seems to be a continuous
family of minima for rope
length, in which case mini-
ma are not isolated in the
link class. cc, ‘Linear’ confor-
mation of a twist knot —
apparent minimum. dd, An
N-crossing knot fits in a
square of side order N. ee,ff,
Minima for figure-eight and
square knot respectively. No
particular accuracy is
claimed — these knots were
tied before the calculation
of the computer data7, and
both the conformation and
the values for rope length
match almost exactly, as
did several other knots. gg,
Minimum for the ‘granny’
knot, differing in shape from
the minimum found by
computer11, and having a different symmetry. hh, Another view. We estimate this to be the true global mini-
mum. ii, Some support for the accuracy of the rope calculations is given by this conformation of the five-
crossing torus knot, which by rope seemed to be a lower minimum than the conformation reported in ref. 7.
Further computation confirmed this.


