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Which tangles more readily: curly hair or straight hair? A perhaps natural
thought, supported by some theoretical evidence, is to associate curvature and
entanglement, and assume that they would grow together - that an increase in
one fosters an increase in the other. However we have biological examples such
as DNA in the chromosome, and mechanical examples such as coiled telephone
cords, in which much more curvature is employed than is required for the
packing, and in which tangling is presumably detrimental.

We o↵er a resolution to this conundrum. We show, that at least for sim-
ple but generally applicable models, the relationship between curvature and
entanglement is subtle: if we keep filament density constant and increase cur-
vature, the entanglement initially increases, passes through a maximum, then
decreases, so there is a regime where increasing curvature increases entangle-
ment, and there is also a regime where increasing curvature decreases entan-
glement. This has implications for filament packing in many circumstances,
and in particular for the compaction structure of DNA in the cell – it provides
a straightforward argument for the view that one purpose of DNA coiling and
supercoiling is to inhibit entanglement. It also tells us to expect that wavy
hair –neither the straightest nor the curliest – tangles most readily.

How would one best pack a long string into a small volume so as to minimize tangling?
A little thought tells us that we could could accomplish this by inhibiting the motion of the
string entirely. However, in many circumstances this is not possible; often, as in the cases
of the DNA and the suddenly obsolete telephone cords mentioned above, because motion
is required for the purpose or function of the string.

In particular, DNA in the cell lives in a fairly volatile environment – there are free radical
collisions which can cause breaks in the string, sections of the string must be manipulated
and exposed for RNA copying, and of course the entire string must be unzipped and
replicated for mitosis (cell division). To address these happenings and others, there is
constant enzyme activity – cutting, joining, copying, repairing the string. All of these
e↵ects, and others, can lead to tangling and DNA tangling can cause, among other things,
cell death [7]. There are several families of enzymes, most prominent of which are the
topoisomerase, which address this tangling problem.

Many of our everyday filaments, such as hair and electronic cables, while they are not
frequently cut and repaired, are also in dynamic environments.
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In sum, this means that we can expect some noise or stochasticity to play a role in the
filamentary behavior. So perhaps our question is better stated as: how would one best pack
a long string into a small volume so as to minimize tangling, given that there will be some
motion and stochasticity involved? The curvature is a local property of the filament, one
of the fundamental descriptors of any filament, and so is natural as a first focus point in
these sort of problems. For example, there has been considerable interest in the curvature
of DNA[11][12][1][5][13][14].

Some basic connections between curvature and entanglement have been found. Milnor
[15] showed that any knot in a closed loop would require at least 4⇧ of total curvature,
where total curvature is defined as the integral or sum of the curvature over the length of
the knot. One might think from this that entanglement patterns of increasing complexity
require increasing curvature (here and henceforth by curvature we mean total curvature).
However, as was shown in Buck-Simon[6], this is not the case, one can have knots of
arbitrarily high complexity, as measured by crossing number, with curvature 4⇧+ ✏, where
✏ is an arbitrarily small constant. But it was additionally shown there that this only
happens in what are, at least for applications, somewhat special cases – the knot must
have regions where it is long and thin, in the sense that one strand can wrap around
another in such a way that their tangents are nearly parallel and they are arbitrarily close
together over a long distance. Such conformations cannot be constructed if the filament
has non-zero thickness (as is the case with most real-world filaments). In the same work
it was shown that the entanglement is bounded by the product of the curvature and the
ropelength, where the ropelength is the ratio of the length to the radius of the thickest
rope (the thickest tube with no self-intersections) one can place about the conformation
(use the knot curve as the centerline of the tube)[3][2].

If we pack a C2 curve of length l into a ball of radius r, then the total curvature Kis
such that K � (l/r) � 2. This is a lower bound – it is how much the string is forced to
curve to fit into the ball: certainly it could curve more.[6] We also note that this result
requires a continuous string – one could cut the string into small bits and pack it into the
ball with no curvature at all. If we assume unit thickness for the filament, and pack it as
tightly as possible into the sphere, then we will have a sphere of radius r ⇡ l1/3, so by the
above K is at least K ⇡ l

l1/3
= l2/3. But we have shown that in this case entanglement

is bounded by l4/3, so we have that entanglement is bounded by K2[2][4]. Note that one
usually cannot find lower bounds for entanglement – because it is usually possible to make
a conformation with no essential crossings (the unknot). We have developed, however,
a theory of expected entanglement[4], and we have in general that for a long string the
expected entanglement is bounded by K2. This bound is not generally sharp: consider a
string of trefoils tied in a rope. In this case both the curvature and the entanglement grow
linearly with the number of knots in the rope. So it remains to generally characterize the
relationship between curvature and entanglement. Numerical modelers have studied the
total curvature of models of stochastic filaments, providing growth estimates for specific
models of long strings[16].
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We would like to focus on the e↵ect of curvature on entanglement by considering the
basic practical question above: given that we need to pack a certain amount of length
in a certain volume, how should we manage the bending, the curvature, so as to mini-
mize entanglement? So, we fix the density (the length per volume), and ask: how does
entanglement tend to vary as we vary curvature?

We can do this analysis in the following model system. Let circles be centered at each
lattice point in the cubic lattice (three dimensions) for some finite cube of fixed size, where
the cube is large enough to contain many lattice points. Let the circles be randomly
oriented with respect to one another. (A similar analysis could likely also be done for
circles with randomly placed centers and random orientation). We will vary this system
by changing the number of circles, that is, the distance between the lattice points, while
keeping the total length constant – so we have to vary the radii of the circles as we vary
the lattice spacing. The idea is that this way we are keeping the density constant – since it
is just the length per unit volume, but varying the curvature, since the total curvature is
simply 2⇧N , where N is the number of circles. Let us say that the total length is L. Then
the length of each circle is L

N , so the radii are L
2⇧N . There are N circles in the cube, so the

distance between the centers of nearest neighbors is N
�1
3 (assuming a cube of width 1).

This system, for various N , is depicted in Figure 1. A system of randomly placed
circles with the possibility of linking has been used to model mitochondrial DNA from
trypanosomes[8].

Now, how to measure the entanglement? In this system there is one straightforward
method: simply count how many pairs of circles are linked. For an estimate, we will
simply assume that some percentage of circles which could be linked are, that is, the pairs
of circles whose centers are closer to one another than twice the radii. To be more precise,
the probabilty of linking of two circles as a function of the distance between their centers
has been studied [10][9], and we could use a better approximation, but we will continue
on this track for the nonce. So the question becomes: for a given circle, how many other
circles have their centers within two radii? The radii are L

2⇧N , so the question becomes,

how many lattice points, where the lattice unit is N
�1
3 , are in a ball of radius L

⇧N ? But
this is approximately:
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Now this is the estimate for the linking of a single circle. There are N circles, so our
estimate for the entanglement is
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This is order 1
N for a fixed length L. Since the total curvature is just 2⇧N , we have

that for the regime where our assumptions are reasonable the entanglement as a function
of the total curvature decreases with the inverse – the more the curvature, the less the
entanglement.
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In the limit of many, many circles, the estimate will fail because there will come a point
where the radius is so small that even neighboring circles cannot be linked. This happens
when N2/3 > L/⇧. N2/3 = L/⇧ gives an estimate of order N , which is the point when each
circle only links with its nearest neighbors – a bit more distance between circles and this
last connection is lost. If we were to proceed in the other direction – decreasing the number
of circles, we reach the point where the radius of the circles is on the order of the size of
the cube, and so we can no longer assume that the number of circles with centers within
two radii grows with the radii (the circles become larger than the box). The assumption
in this limit is that each circle links with a percentage of all of the other circles, and so the
estimate is order N2, and the entanglement limit here would also be 0, reached when the
number of circles is 1.

In Figure 2 we can see the shape of the graph that gives entanglement as a function of
total curvature, keeping density constant. Begining from small total curvature (few circles)
to large total curvature (many circles), we have a graph that increases to a maximum, then
declines with an inverse tail, and the tail transitions to become identically zero at some finite
point. This graph is intended only as a qualitative description, no particular modelling
function is implied.

In [17] the authors discussed a model of DNA packed in phage heads. The idea was to
learn something about the packing geometry by studying knots created by the geometry.
They found (among other things) that increasing the sti↵ness of the DNA led to an increase
in knot formation (the length of the DNA is kept constant, as is the volume of the phage
head, so the density is constant). This is in keeping with the analysis we have presented
here. Increasing sti↵ness tends to decrease curvature, so the finding in this case is that a
decrease in curvature led to an increase in entanglement. So the implication is that the
model under study is in the regime past the entanglement maximum, where increasing
curvature decreases entanglement (they are simply moving in the opposite direction as
compared to our presentation – decreasing curvature instead of increasing it).

In Figure 3 we have a two dimensional schematic representation of the relationship
between curvature and entanglement. Here in the top row we have circles arranged in a
plane in two dimensional grid inside a box. Each box is the same size (9 by 9), and the
total arc-length is the same (36⇧). We simply use the number of crossings as a proxy for
entanglement, and the total curvature is 2⇧N , where N is the number of circles. In the
left frame there are 4 circles and 12 crossings. In the middle frame there are 9 circles and
24 crossings. In the right frame there are 16 circles and 0 crossings. In the second row we
have a similar schematic with a single continuous curve in each frame. We have numerical
estimates of the arclength and the curvature in each frame, note that the arclength is nearly
constant across the three frames. The box size is 2 by 2 in each frame. In the left frame the
arclength is approximately 21.0468 , the curvature is approximately 25.1327, and there are
15 crossings. In the middle frame the arclength is approximately 21.0456, the curvature
is approximately 69.115, and there are 36 crossings. In the right frame the arclength is
approximately 21.0418, the curvature is approximately 119.381, and there are 20 crossings.
In the third row we see examples of straight, wavy, and curly hair, at approximately the
same scale. This is for illustration only – we do not have experimental data on human hair
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entanglement, but the general principle elucidated in this paper predicts that at some level
of curliness entanglement as a function of length (with constant density) would begin to
decline.

We can use this analysis to get some sense of the benefit of coiling in the avoidance of
entanglement. DNA is supercoiled in many circumstances[18][19][20], and the approach
here could perhaps be thought of as a conceptual guide for that application, we o↵er an
approach to the simple coil often seen in telephone cords and other filamentary objects in
everyday use. We ask: say we took the circle system discussed here, and turned the circles
into circles of coils, would this increase or decrease entanglement? As before, we preserve
total length and volume, so as the length is taken up by the coiling, we reduce the number
of circles. Our new object is roughly depicted in Figure 4. Say the coil radius is 1/10 the
radius of the original circle. Say there are 20 coils in a full transit of the object. Then
the new length is roughly the original length l plus 20 circles of length l/10, or 3l. This is
in keeping with experience – that a telephone cord can stretch to thrice its coiled length.
But since we are keeping total length fixed, we now have N/3 circles. To estimate the
entanglement of this system (in the middle regime above), we assume that it comes from
two contributions – the more global interactions of the coiled loops with one another, and
the more local interactions of the coils along a single loop. For the global interactions we
have that the large radii are unchanged at L

2⇧N , the grid unit has now become 3
N1/3 and

so we get 1/9 L3

6⇧2N . For local contribution we assume that the coils can only interact with
near neighbor coils, so we get N/3⇥ 20. (We can estimate the curvature of the coiled loop
system as the number of loops plus the number of coils, or 21N

3 ). So, if

1/9
L3

6⇧2N
+

20N

3
<

L3

6⇧2N
,

then this coiling inhibits entanglement. Note that this is not the case in the large N limit.
Here coiling is counterproductive – the induced local entanglement from coiling outweighs
the savings in larger loop entanglement. In fact coiling may not reduce entanglement
for any N if L is small enough – coiling saves on entanglement in the reasonably dense
regime. On the other hand, for high density there is a fairly wide range of parameter
values for which coiling seems to be a very e↵ective strategy for reducing entanglement.
The transition from the second frame to the third frame of the middle row of Figure 3 can
also be thought of as an illustration of this.
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Figure 1
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Figure 2
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Figure 3
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Figure 4


