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The determination of the exact trajectories of mutually interact-
ing masses (the n-body problem1,2) is apparently intractable for
n > 3, when the generic solutions become chaotic. A few special
solutions are known, which require the masses to be in certain
initial positions; these are known as ‘central configurations’ (refs
1–6) (an example is the equilateral triangle formed by the Sun,
Jupiter and Trojan asteroids). The configurations are usually
found by symmetry arguments. Here I report a generalization
of the central-configuration approach which leads to large con-
tinuous families of approximate solutions. I consider the uniform
motion of equidistributed masses on closed space curves, in the
limit when the number of particles tends to infinity. In this
situation, the gravitational force on each particle is proportional
to the local curvature, and may be calculated using an integral
closely related to the Biot–Savart integral. Approximate solutions
are possible for certain (constant) values of the particle speed,
determined by equating this integral to the mass times the
centrifugal acceleration. Most smooth, closed space curves con-
tain such approximate solutions, because only the local curvature
is involved. Moreover, the theory also holds for sets of closed
curves, allowing approximate solutions for knotted and linked
configurations.

Central configurations1–6 are usually thought of in one of two
ways. With appropriate initial velocities, a planar central config-
uration gives homographic solutions—in which the shape of the
initial configuration is preserved, but not necessarily the size (a
special case is rigid rotation, where the centrifugal forces exactly
balance the attraction due to gravity and size is preserved as well). In
our Solar System, the Sun, Jupiter and the Trojan asteroids form an
equilateral triangle homographic solution. Alternatively, if a central
configuration is allowed to run from rest, then the solution is that the
configuration collapses to the centre of mass, while keeping its shape.

Here I generalize the idea of a central configuration, searching for
conditions such that a set of masses would move along a given space
curve. Let xi denote the position vector for the ith mass, and let ẍi

denote the acceleration vector of the ith mass. Consider the regular
n-gon of equal masses, which is known to be a central configuration
for all n. If the velocities are of the correct magnitude and tangent to
the circle containing the n-gon, then a relative equilibrium solution
is given; the masses move along the circle with uniform speed. Let k
denote the curvature vector—the vector in the direction of the
normal with length equal to the curvature. Then in this system we
have k ¼ ð1=v2Þẍi for all masses in all positions xi(t) along the circle
containing the masses, because if a mass travels along a given curve
with uniform speed v, ẍi ¼ kv2.

In general, if there were n masses distributed along a closed space
curve, moving along the curve with uniform speed v, and the
condition k ¼ ð1=v2Þẍi held for all masses in all positions xi(t) (all
translations of the masses along the curve), then the space curve
would contain all the trajectories of the system, and we would have a
solution to the n-body problem. In this sense, the equations ẍi ¼ kk
can be thought of as a generalization of the central configuration
equations ẍi ¼ kxi.

I now consider the likelihood of finding such curves. The perhaps
surprising result is that, in the limit as n (the number of masses)
tends to `, most smooth closed space curves are such curves. By
‘most’ we mean curves with bounded curvature, a finite number of
inflexion points and without self-intersections. These are generic
conditions for smooth space curves.

Consider a sub-arc of such a curve, and let n, the number of equal
masses distributed along the curve, be large enough that the change
in curvature is small between successive masses (Fig. 1). Choose a
mass mi. The components of ẍi come in pairs, taking the effect from
mi+1 together with the force from mi−1, miþ2 with mi−2, and so on. As
the masses are equidistributed along the curve, and the curve is
nearly ‘flat’ between successive masses, this pairing cancels the
tangential component of the force from the nearest neighbours.
To first approximation we are left with the component of the force in
the direction of k.

Next I consider the limit of a distribution along the curve, keeping
the total mass constant (say 1), and letting there be n masses of mass
1/n, and letting n → `. Suppressing for the moment G, the gravita-
tional constant, and r, the line density (mass per unit length), which
both enter as scalars, the computation of ẍ becomes an integral,
ecðx 2 yÞ=jx 2 yj3, where x is a particular point on the curve c, and y
varies along the curve. The cancellation of tangent forces mentioned
above means that the integral, near the point x, can be approxi-
mated by ðk=jkjÞeðcos aÞ=jx 2 yj2, where a is the angle between the
vector x 2 y and k, the curvature vector at x. This integral is
divergent as y approaches x. The cos a cancels one power of x 2 y
at the singularity, but the curvature gives a coefficient to this
cancellation. The remaining inverse power gives us a logarithmic
singularity at x ¼ y (Fig. 1). Let R be the local radius of curvature,
and d the small particle size (1/n). Then in the limit as n → ` we
have ẍi → Gr logðR=dÞk. Here I used the case of equal masses for ease
of exposition. The analysis requires only the equidistribution of
mass along the curve.

Let the particles move along the curve with uniform speed v given
by v2 ¼ Gr logðR=dÞ. (R weakly varies over c, but as n → ` it tends to
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Figure 1 The gravitational force vectors F1 and F2 result from the effect of miþ1 and

mi 2 1 on mi. As miþ1 and mi 2 1 approach mi symmetrically along the circle, the

components of F1 and F2 tangential to the curve (here the circle) cancel,

leaving only the contribution in the direction of the curvature vector. Passing to

the continuous case, it is necessary to analyse eðcos aÞ=d2. But using d2 ¼

w2 þ ðR 2 vÞ2, we have cosa=d 2 ¼ ð1=dÞ½ðR 2 vÞ=d2ÿ ¼ ð1=dÞ½ðR 2 vÞ=ð2R2 2 2RvÞÿ ¼

ð1=dÞð1=2RÞ, so the integral becomes ð1=2Þkeð1=dÞ, which is the logarithmic singu-

larity times the curvature vector. The analysis for the general case is given by

considering the osculating circle at the given point on the curve. This analysis is

similar to the calculation carried out in fluid dynamics in the analysis of the

dynamics of vortex filaments. In that case, the force is in the direction of the

binormal of the underlying curve (the vortex filament), as opposed to the normal,

and the logarithmic singularity is regularized, giving the local induction approx-

imation: the vortex filament’s self induction is given by speed that is the norm of

the curvature, in the direction of the binormal vector7,8.



Nature © Macmillan Publishers Ltd 1998

8

a uniform value, so for uniform motion a representative constant
should be chosen). Then Newton’s equations of motion are nearly
satisfied for all times.

A physical interpretation is to think of the bodies as restricted to
the space curve, like beads on a wire, and ask how much force is used
to keep the beads on the wire as they traverse it (at speed v). In a
solution, such as a relative equilibrium, no force at all is required. In
an approximate solution this force should be small. In this spirit I
offer a definition of periodic approximate solution—other defini-
tions are certainly possible. In a solution to the n-body problem,
Newton’s equations of motion

miẍi ¼ ^
n

j¼1;iÞj

Gmimjðxj 2 xiÞ

jxi 2 xjj
3

hold for all masses. In an approximate solution, which is a set of
trajectories XðtÞ ¼ x1ðtÞ; x2ðtÞ;… xnðtÞ, the equations nearly hold. It
is necessary to define ‘nearly’. Let

Ei ¼ miẍi 2 ^
n

j¼1;iÞj

Gmimjðxj 2 xiÞ

jxi 2 xjj
3

�
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�
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For periodic trajectories, let Er denote the maximum over the n
masses of E9iq, where q is the period and E9i is the maximum of Ei

over 0 < t < q. If Er is small, there is a sort of uniform bound on the
‘error’ along each trajectory and I will call X(t) an approximate
solution. For the trajectories along closed curves described above
Er → 0 as n → `. Simpler sets of curves, such as the Hopf link
(Fig. 2), require fewer masses to make Er small. Measures of
complexity of curves may give us estimates of the number of
masses required (Fig. 3).

Questions remain regarding the exact relationship of these
approximate solutions to n-body initial value problems. In parti-
cular, consider the initial value problem of many masses equidis-
tributed along a closed curve, with initial velocities which are
tangent to the curve and have constant magnitude
v ¼ ðGr logðR=dÞÞ1=2. The existence of the approximate solutions
would seem to give an idea of the behaviour of the initial value
problem for some time interval—the masses nearly follow the
underlying curve: the question is how long a time interval.

A long-standing open question in celestial mechanics is whether
there exist continuous families of central configuraitons for a given
set of masses. We can construct approximate collapse solutions
consisting of masses distributed along circles about the centre of
mass, where the density of the distribution on a given circle of radius
R is R2 (so we have ẍi ¼ kxi for masses on each circle). As the local
contribution along the curve dominates, the orientation of the

letters to nature

52 NATURE | VOL 395 | 3 SEPTEMBER 1998

Figure 2 Schematic representation of a simple link approximate solution.

Figure 3Schematic representation of a knotted approximate solution.One way to

measure the rate of convergence (in n) to the infinite speed solution for a

particular curve is by subtracting off the logarithmic singularity at each point.

Consider the double integral EðcÞ ¼ eej½ðx 2 yÞ=jx 2 yj3ÿ 2 ½ðx 2 SÞ=jx 2 Sj3ÿj, where

the interior integral is computed byholding x fixed and letting y varyover the curve

c, and letting S vary over the osculating circle to c at x. For the exterior integral, let

x vary over c. The integral is finite for the curves which satisfy our conditions.

EðcircleÞ ¼ 0, as the osculating circle for the circle is the circle itself. A higher E

value indicates that more masses may be required for a better approximate

solution. For example, if the curve self-intersects, EðcÞ ¼ `, and near self-inter-

sections have high E(c). E(c) is closely related to ‘energy’ functions for knots and

links that have recently been studied9–12. Such functions have been found to be

remarkably effective at simplifying complex tangles (R. Scharein, Knot-Plot,

program available at http://www.cs.ubc.ca/nest/imager/contributions/scharein/

KnotPlot.html; K. Brakke, Evolver, program available at http://www.geom.umn.edu),

and have found applications in biochemistry13,14. Figure 4 Schematic of approximate collapse solutions.
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circles to one another makes no difference, and in the limit we have
continuous families of collapse solutions (Fig. 4).

The analysis involved an integral of the same form as the Biot–
Savart integral, a much studied integral which arises in several
contexts in magneto-hydrodynamics. This connection invites
further investigation. The results may be of use in particle systems
where filamentary distributions tend to arise, such as cosmic strings.
Also, because the acceleration of a filamentary equidistribution is
approximated by the curvature, connections to curvature driven
flows are possible. M
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The modification and control of exciton–photon interactions in
semiconductors is of both fundamental1–4 and practical interest,
being of direct relevance to the design of improved light-emitting
diodes, photodetectors and lasers5–7. In a semiconductor micro-
cavity, the confined electromagnetic field modifies the optical
transitions of the material. Two distinct types of interaction are
possible: weak and strong coupling1–4. In the former perturbative
regime, the spectral and spatial distribution of the emission is
modified but exciton dynamics are little altered. In the latter case,
however, mixing of exciton and photon states occurs leading to
strongly modified dynamics. Both types of effect have been
observed in planar microcavity structures in inorganic semicon-
ductor quantum wells and bulk layers1–8. But organic semicon-
ductor microcavities have been studied only in the weak-coupling
regime9–18. Here we report an organic semiconductor microcavity
that operates in the strong-coupling regime. We see characteristic
mixing of the exciton and photon modes (anti-crossing), and a
room-temperature vacuum Rabi splitting (an indicator of inter-
action strength) that is an order of magnitude larger than the
previously reported highest values for inorganic semiconductors.
Our results may lead to new structures and device concepts incor-
porating hybrid states of organic and inorganic excitons19, and
suggest that polariton lasing20–22 may be possible.

Strong coupling manifests itself in anti-crossing of the coupled
modes and the appearance, on resonance, of two equal-intensity
transitions separated by the vacuum Rabi splitting. These new cavity
polariton modes can be considered an admixture of the optical
transitions of the material and the cavity photon modes, and have a
radiative lifetime determined by the cavity photon lifetime. Strong
coupling is evident when the interaction strength (Rabi splitting)
exceeds the optical transition and cavity mode damping. Under
these conditions, a periodic exchange of energy (Rabi oscillation)
can occur between the coupled modes before the excitation decays.
In the perturbative weak-coupling regime, the interaction strength
is less than the damping. Anti-crossing is then no longer observed
and whilst significant changes in the spectral and spatial distribu-
tion of transition probability do still occur, no dramatic changes in
recombination dynamics are expected.

Up until now, strong coupling in a semiconductor microcavity
has only been achieved using inorganic materials. A typical struc-
ture consists of a high finesse Fabry–Pérot resonator with distrib-
uted Bragg reflector mirrors and a series of quantum wells placed
close to the confined field antinode. The largest Rabi splitting
reported for a III–V (GaAs) based microcavity structure is23

9.4 meV. Larger values, namely 17.5 meV, have been reported for
II–VI (ZnCdSe)-based microcavities8. The splitting depends on the
exciton oscillator strength and the magnitude of the confined field,
and is maximized for matched cavity and optical transition
linewidths1–4,24. The enhanced Rabi splitting for II–VI semiconduc-
tors is principally due to their larger oscillator strengths.

Organic semiconductors have recently attracted much interest for
applications in electroluminescent displays and as gain media.
Microcavity structures9–18 have been fabricated to allow control of
the emission energy, linewidth, intensity and directionality for
light-emitting diodes, as prototypical colour displays and as laser
resonators. Large oscillator strengths are a characteristic feature of
these materials. Strong coupling has not, however, been reported.
The large exciton linewidths25 that result from inhomogeneous
broadening and the presence of a vibronic progression make
strong coupling difficult to observe. This situation is not, however,
universally true and we have identified several candidate materials
that have sufficiently narrow exciton linewidths that strong-coup-
ling might be expected to be seen in a typical microcavity structure.

We report experiments that use tetra-(2,6-t-butyl)phenol-porphyrin
zinc (4TBPPZn) as the organic semiconductor. This molecule has

Figure 1 The absorption spectrum of a blend film of 4TBPPZn in polystyrene. The

insets show the chemical structure and electronic energy-level scheme26,27 for

4TBPPZn. TheSoret bandpeaksat 2.88 eVand the Q-bandabsorbance is seen as

a weak double peak structure between 2.0 and 2.26 eV. The Soret-band exciton

decay time is expected to be t ¼ 3:6ps and the emission yield f ¼ 0:18%, due to

rapid relaxation to the Q-band exciton27.


