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A type-2 topoisomerase cleaves a DNA strand, passes another through the
break, and then rejoins the severed ends. Because it appears that this
action is as likely to increase as to decrease entanglements, the question
is: how are entanglements removed? We argue that type-2 topoisomerases
have evolved to act at “hooked” juxtapositions of strands (where the
strands are curved toward each other). This type of juxtaposition is a
natural consequence of entangled long strands. Our model accounts for
the observed preference for unlinking and unknotting of short DNA
plasmids by type-2 topoisomerases and well explains experimental
observations.
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Type-2 topoisomerases lower the probability of
DNA linking and knotting of small plasmid
DNAs by a factor of 16 to 90-fold relative to that
level achieved by random DNA strand passage.1

This finding was interpreted to mean that these
enzymes prefer to disentangle, which is the
required biological activity, rather than tangle
DNA. Several models for how type-2 topo-
isomerases achieve this have been offered.
Rybenkov et al. proposed that the topoisomerase
tracked along two DNA helices to pinch a third.1

However, Yan et al. calculated that the probability
that three DNA strands coincide in space was too
infrequent to account for this type-2 topoisomerase
activity.2,3 Instead, they proposed a “kinetic proof-
reading model” in which the enzyme, bound to
one DNA helix, required two consecutive
additional helix collisions to effect DNA strand
passage. Vologodskii and co-workers proposed
that a short region of localized high curvature, a
hairpin, is created by the topoisomerase and that
the DNA strand passage occurs when another
DNA helix is enclosed by the hairpin.4,5 These
models are locally “blind” in the sense that they
do not let topoisomerase use local information
already present on the substrate to determine
good places for action. The hairpin, in particular,
is placed by the topoisomerase at random points
along the strand so that the enzyme must wait

until strands are brought into juxtaposition to then
act.

Local structure of juxtapositions

Type-2 topoisomerases bind helix–helix
juxtapositions.6 – 11 Here, we propose that type-2
topoisomerases use the local information at the
juxtaposition to distinguish an entanglement from
two helices that are juxtaposed, but not entangled.
To illustrate this, we depict in Figure 1 double-
stranded DNA as ropes. The position of the ropes
in space is determined by their center curves, K1

and K2. Let P1, P2 denote the points on the curves
K1, K2, respectively, such that lP1 2 P2l is mini-
mized. Let p12 denote P1 2 P2, and p21 ¼ P2 2 P1

denote the separation vectors for P1 and P2. The
juxtaposition exists when lp12l , c, for some pre-
determined constant c, let us say roughly equal
the diameter of a type-2 topoisomerase, ,100 Å.
Let T1, T2 denote unit tangent vectors to K1, K2 at
P1, P2, respectively. Let r1, r2 denote the curvature
vectors at P1 and P2.

We could classify the juxtapositions by the triple
of vectors T1 T2 and the separation vector, which
would allow us to distinguish between right and
left hand. The categories could be further subdi-
vided by considering the magnitudes of the curva-
tures and subdivisions of the angles between the
tangents. Because DNA contains directional read-
out, that information is also present at a juxtaposi-
tion. We can also consider the time derivatives of
the vector sets shown in Figure 1E and denote

0022-2836/$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

E-mail address of the corresponding author:
elz@bcm.tmc.edu

doi:10.1016/j.jmb.2004.05.034 J. Mol. Biol. (2004) not known, xxx–xxx

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

ARTICLE IN PRESS



Figure 1. How strands juxtapose. We show four cases. Hooked juxtapositions are cases A and E, where the curves
are curved toward each other (r1·p21 . 0 and r2·p12 . 0) and B, where one curve encloses the other (r1·p21 , 0 and
r2·p12 . 0 and r1 . r2). Free juxtapositions are case C, where the curves curve away (r1·p21 , 0 and r2·p12 , 0), and case
D, where the inner curve has the greater curvature (r1·p21 . 0 and r2·p12 , 0 and r1 . r2). Through most of this work
we are concerned with cases A and C. F, Supercoiled links tend to have hooked juxtapositions. G, The most exposed
sections of loops tend to be those that curve away from an arbitrary path of approach, so unlinked loops tend to
have free juxtapositions. H, Two tangled loops being pulled apart, creating hooked juxtapositions.
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them P1t, P2t, p12t, etc. Each of these has geometri-
cal interpretation. p12t, for example, can measure
the rate at which the closest points tend to come
together or separate. If p12t is small, the juxta-
position is persistent. If P1t is large, but P2t and
p12t are small, we could imagine that K1 is locally
sliding past K2, an axial motion. Some sort of pull-
ing force or random motion could cause r1t . 0
and r2t . 0.

Methods for recognizing local structure

One way that type-2 topoisomerases might dis-
tinguish juxtapositions would be if, built in to the
enzyme, was a template into which the juxta-
position fit or not. Alternatively, curvature could
be read from the bending strain on the helical
structure. Right and left-handed juxtapositions lie
upon each other differently,10 which provides a
way for topoisomerases to distinguish
handedness.12,13 Because type-2 topoisomerases
have preferred DNA cleavage sequences, it is
likely that DNA read-out influences how these
enzymes distinguish juxtapositions. Time may
come into play. If a type-2 topoisomerase acts with
some likelihood on any juxtaposition, then those
juxtapositions with greater persistence may be
preferentially recognized. With time, fluctuations
could place the DNA strands in correct position
for the topoisomerase to fit a template. This would
happen quickly for juxtapositions that are already
near the template shape, slowly for ones that are
not. Curvature and persistence are connected
through two routes. First, hooked juxtapositions
have greater local constraints than free juxta-
positions. A simplistic analysis: assume that the
two strands are relatively stiff and consider the

local rigid motions of K1, holding K2 fixed. A basis
for these motions is the positive and negative
translations in the p12, T1 and B1 directions (where
B1 is the binormal at P1), and the three rotations
about these vectors (assume the origin is at P1).
For the hooked juxtaposition in Figure 1A, the
motion is constrained in each translational direc-
tion except the negative p12, and in two of the
three rotations. In the free juxtaposition case in
Figure 1C, the motion is constrained only in the
negative p12 direction of the six translations and in
only one of the rotations, and even that is a large
angle constraint. Similar considerations show that
the hooked in Figure 1B is more constrained than
the free in Figure 1D, but the difference is less
than for A and C (Figure 1).

Second, it is generally held that two DNA helices
must overcome electrostatic repulsion to create a
juxtaposition. Consider the potential energy of
two like charged strands, spreading the charge out
uniformly along the strands (assume unit charge
density). We calculate only the effect of each strand
upon the other, and not the effect of the strand
upon itself (the self-potential of a charged string is
well known to have a logarithmic singularity.14

The assumption is that the bonds along the strand
locally counteract the self-potential. Here, strands
are bent at a p/2 angle, and moved toward one
another by rigid translation (Figure 2A). The maxi-
mum energy takes place when p . 0, and
decreases through p ¼ 0, so that once the strands
are close enough, bringing them even closer is
energetically favored (Figure 2B). Therefore,
hooked juxtapositions are locally attracting (or at
least not repelling), and free juxtapositions are
repelling.

Similar considerations hold for the angle, a,

Figure 2. Effect of charge on strand juxtapositions. In B, the x-axis is the separation, p, depicted in A, the y-axis is the
electrostatic potential E of the strands upon each other. For this computation, the edges are of length square-root 2, the
charge density along the edges is constant 1, and the graph is of the integral of the inverse distance between pairs of
points on the edges, where the distance p is the distance between the central vertices of the two angled filaments.
The graph was computed by the software Mathematica, the complete code is: x1[t_]: ¼ t; y1[t_]: ¼ t; z1[t_]: ¼ 0.0;
K1[t_]: ¼ {x1[t ],y1[t ],z1[t ]}; x2[s_]: ¼ 0.0; y2[s_]: ¼ 2s þ m; z2[s_]: ¼ s; K2[s_]: ¼ {x2[s ],y2[s ],z2[s ]}; CHPL[v_]: ¼
N Integrate[2/(((K1[t ] 2 K2[s ])·(K1[t ] 2 K2[s ]))^.5),{t,0,1},{s,0,1}]; Plot[CHPL[v ],{m, 2 4,4}]. Note that this is the
contribution from the interaction of one edge with both edges of the other filament. For the full cross-potential the
numerator of the integrand should be 4, which of course does not change the shape of the curve. A, was rendered
with Pov-Ray. For C, discrete charges were uniformly spread along the filaments and all interactions between charges
were calculated. The endpoints of the strands form a regular tetrahedron and a ¼ p/2, where a is the angle between
the tangents at the juxtaposition. The software Knotplot was employed for both the calculation and the rendering.
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between the tangents. In Figure 2C is depicted the
result of a numerical computation of the minimum
electrostatic energy conformation of two flexible
strands that are joined at their center points. If
p ¼ 0, hooked and free juxtapositions are
indistinguishable. The conformation is non-planar
and so has non-zero curvature at the midpoint of
the strands, an additional connection between
curvature and juxtapositions.

How global topology is expressed in
local structure

A thought experiment illustrates how type-2
topoisomerases may act. Imagine N (large number)
exact (perfectly round) circles moving by random
continuous motion within a finite volume. Employ
a rule, rule H: if the juxtaposition is hooked, then
the strands are passed through one another; other-
wise they are not. Because we have exact circles,
rule H will not link any pair and, as long as the
circles are free to move, it will eventually unlink
all linked pairs. So the long-run behavior is N
unlinked circles: trivial topology. In contrast, rule
F passes DNA strands only in free juxtapositions.
There is no unlinking, so in the long run every
circle is linked. Rules H and F use local juxta-
position information to arrive at opposite topologi-
cal outcomes. This result is dependent on the
length and rigidity of the circles. That is, as long
as the loops are perfect geometric circles, the local
geometry completely determines the topology.
However, DNA is an elastic filament with bending
energy. So increasing length adds geometric flexi-
bility, the loops move further and further away
from perfect circle conformations. We can imagine
the opposite end of the spectrum from the perfect
circle case: very long loops packed at a high den-
sity and mixed about one another, think of a bowl
of spaghetti. Because the loops are very long, and
intertwine with one another, some rule H crossings
will now create links. Either rules H or F, applied
to a system of arbitrarily long chains in constant
density, would tend to the same order of topologi-
cal complexity proportional to L 4/3, where L is the
total length of the system.15 Consider an inter-
mediate case: random closed loops of a fixed
length, sparsely distributed. Isolated closed loops
have fewer rule H than rule F accessibility, mean-
ing that when two isolated loops come into contact,
the juxtapositions are more likely to be free than
hooked. Rule H will, in this case, decrease linking,
though not to the extent it does for perfect circles.
In general, the effectiveness of a rule that depends
upon local information will depend upon both the
length and the density of the DNA strands.

Let S1 be the smallest sphere containing loop K1,
S2 the smallest sphere containing K2. Generically,
S1ðS2Þ is determined by four points along K1. At
these points the curvature vector points inside
S1ðS2Þ. Assume K1 and K2 are not linked, and
brought near one another. The points most likely
to be brought into juxtaposition are near these

external points (see Figure 1F). However, such jux-
tapositions cannot be hooked. More generally,
place two unit spheres randomly in a large box
and compute the conditional probability that, if
they intersect, how far apart are their centers.
Shallow intersections (distance between centers
between 1/2 and 1) are roughly sevenfold more
likely than deep (distance between 0 and 1/2)
ones. However, shallow intersections tend to give
free juxtapositions of unlinked loops. In general, if
we approach the loop from an arbitrary direction,
then at the points most likely to hit first, the strand
is curved away from the direction of approach.

Therefore, we define rule H (in)accessibility.
A tightly wound ball of string is perfectly rule H
inaccessible: from all directions of approach the
string curves away at the point of first incidence.
Two compact globules are very unlikely to have
hooked juxtapositions when they first meet. On
the other hand, the external loops of any confor-
mation provide opportunities for rule F crossing
change. In contrast, let K1 and K2 be linked. Under
random motion, their centers drift apart. This
eventually provides a kind of “pulling apart”
force, which results in hooked juxtapositions.
A rule H move, or a series of rule H moves, will
unlink them.

The analysis for untying knots is similar to that
for unlinking catenanes. The principal difference
is that knots are built out of several partial loops.
A typical example is pictured in Figure 3. If the
DNA were a phantom chain (allowing every strand
to pass through), then the labeled crossing change
would create a trefoil, the DNA strand behind
must pass through the loop. The loop has a de
facto inside and outside. Getting from the outside
to the inside cannot be a rule H move. Thus, by
rule H, knots are not likely to be tied, especially
for the short lengths of a plasmid. On the other
hand, if we start with a trefoil knot, then a bend in
the strand passing through the loop, even a slight
one, creates a hooked juxtaposition, so rule H
unties the knot. This effect is more pronounced in

Figure 3. Random strand passage would generate a
knot. A strand crossing change at the indicated position
would create a trefoil, but this is unlikely to happen by
rule H.
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knots than in catenanes of the same length, because
the subarcs of the knot are the loops and these
loops are even shorter in length than the catenane
loops. As with links, the proportion of hooked to
free juxtapositions in a knot depends upon strand
length and density.

In numerical work, it has been observed that
long, random chains tend to localize a good
portion of their knotting.16,17 By inspection, we
observe that these conformations usually have
outer arcs bent around inner lengths of lesser
curvature. These are hooked juxtapositions by our
definition.15 These conformations are not generic
in our sense because they have continuous families
of closest pairs of points, but they help illustrate
the role of the length constraints.

Additional experimental results and
our interpretations

Type-2 topoisomerases preferentially recognize
and remove the biologically problematic DNA
topological obstructions, knots and catenanes,
over biologically required DNA supercoils.18 – 21

DNA supercoiling increases the effectiveness of
type-2 topoisomerases in unlinking catenanes, and
has a lesser or no effect on knots.20 – 23 These results
are not reconciled by any existing model. Our pos-
tulate that type-2 topoisomerase follow rule H
explains these data. For a supercoiled closed loop,
an approach from any direction first hits a subarc
curving away from the direction of approach, so
that the probability of a hooked juxtaposition
occurring between two loops is nearly 0. If the
supercoiled loops are linked already, a juxta-
position is likely to be hooked (see Figure 1F). If a
minimum curvature threshold exists for rule H
action, then supercoiling makes this more likely to
be reached. The case of a supercoiled knot is
different. Because the strands in a knot node are
already interacting with each other, supercoiling
would have a lesser effect because these juxta-
positions are already rule H friendly. Thus, rule H
will unlink supercoiled catenanes more efficiently
than it will supercoiled knots. Because the curva-
ture in the juxtaposition between the loops shown
in Figure 1F is greater than that in the juxta-
positions created by supercoiling, a type-2 topo-
isomerase would unlink or unknot before it would
relax supercoils.

To model a system such as that in the Rybenkov
et al. experiment,1 we reason dynamically, and
assume that the system will equilibrate at
M ¼ L=U, where L is the rate of linking, and U is
the rate of unlinking. For example, for rule H on
perfect circles, L ¼ 0 and U . 0, so the limit is 0.
For rule F on perfect circles, L . 0, U ¼ 0, so the
limit is M ¼ infinity (all loops are linked). Above
we observed that in the catenane case supercoiling
decreases L and increases U. The experimental
system used in which DNA loops were opened
and closed with some frequency1 should be
roughly equivalent to a rule where some fixed per-

centage of all juxtapositions allows DNA strand
passage (so rule F pass throughs are allowed).
When a type-2 topoisomerase was introduced, the
equilibrium was lowered. A type-2 topoisomerase
has a lower ratio of L to U than a “blind” system
that cannot distinguish between types of juxta-
positions. Let Lb and Ub be the constants for this
blind system, Lto and Uto be the constants for a sys-
tem governed by rule H. Then the equilibrium is
M ¼ ðLb þ LtoÞ=ðUb þUtoÞ. Many factors determine
L and U. At least two can create a difference in the
speeds of the reactions. The loops may open and
close at speeds differing from type-2 topo-
isomerase reaction speed. Also, the opening and
closing of one of the loops in this system occurs at
only one locus along the DNA strand, but topoi-
somerase should be free to act anywhere along the
loop. Therefore, even if the gate opened and closed
with speed comparable to enzyme action, the effec-
tive speed would be reduced by the proportion of
the size of the gate to the arclength of the loop.
Hence, the natural assumption that the equilibrium
of the combined system is close to Lto/Uto. For
knots, we let K denote the knotting constant and
U the unknotting constant. Our analysis gives a
prediction for the dependencies of
ðLb=UbÞ=ðLto=UtoÞ and ðKb=UbÞ=ðKto=UtoÞ on loop
length, which is depicted schematically in
Figure 4A.

We can relate Figure 4A to the experimental
evidence:1 a 16-fold reduction (relative to what
was termed “topological equilibrium”) in linking
in loops of length 10 kb (thus 20 kb total length), a
40-fold reduction in knotting in loops of length
10 kb, and an 800-fold reduction in knotting in
loops of length 7 kb (Figure 4B). As illustrated in
Figure 4A, there is a vertical asymptote at length ¼
C. Our discussion of rule H inaccessibility gave a
rough estimate of D ¼ 8 for longer loops in low-
density situations. The limiting value D depends
on density, but we can estimate that under similar
experimental conditions, at 50 kb or 100 kb, the
ratio would be nearly D.

Rybenkov et al. reported that type-2 topoisome-
rase reduces the variance of the linking number
distribution for a plasmid DNA, meaning that the
enzyme creates a distribution of supercoiling more
tightly clustered about 0 than a random generation
method.1 We interpret these findings to mean that
greater supercoiling, on average, creates more
hooked juxtapositions with higher curvature
(because length is fixed), so the loops with greater
supercoiling are more likely to be acted upon by
rule H.

In the Rybenkov experiments,1 in the measure-
ment of entanglement as a function of enzyme con-
centration, it was seen that entanglement declines
with increasing concentration, reaches a minimum,
then increases with increasing concentration. We
can explain this as follows. In the experiments, the
loops are opening and closing at some rate. When
the enzyme concentration is very low, the gates,
on average, create entanglements faster than the
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enzyme can act, thus near the equilibrium value of
entanglement. As the concentration increases, the
enzyme can, on average, act faster, and so detangle
the system. To see what happens when concen-
tration increases beyond biological levels, we con-
sider further the connection between hooked
juxtapositions and persistence. If the loops are
long enough, then two unlinked loops may meet
in a hooked juxtaposition. Our argument is not
that hooked juxtapositions are impossible for
unlinked loops, just that they are less likely than
free ones. Because they are unlinked, this juxta-
position is not likely to be as persistent as a hooked
juxtaposition of linked loops. The salient point is
that there is information in the length of time juxta-
position persists. If the concentration of the

enzyme is very high, then all hooked juxta-
positions, both those that would have been tran-
sient and those that would have been persistent,
are acted on immediately. So this persistence infor-
mation is lost, as a result of which the ratio of per-
sistent to transient hooked juxtapositions acted
upon is given by the ratio of the rates at which the
respective juxtapositions are formed. If, on the
other hand, the average time it takes the enzyme
to act is long (lower concentration), then the pro-
portion of transient to persistent acted upon now
depends on the length of time the juxtapositions
persist. We imagine that this phenomenon also
happens in the cell, that for this reason too much
enzyme could actually slow disentanglement and
therefore cell division.

Figure 4. Length dependence of
knotting and linking. A, The length
is the length of an individual loop.
We assume that the strands have
some elastic resistance to bending,
some thickness, and that the overall
density is low. For linking, the
asymptote at length ¼ C: as the cir-
cles get shorter, they must become
more like perfect circles because of
the bending constraints. However,
rule H is perfect on perfect circles,
so Lto=Uto ¼ 0, but Lb=Ub . 0,
hence the vertical asymptote. The
horizontal asymptote at
ðLb=UbÞ=ðLto=UtoÞ ¼ D as length
tends to infinity. Given rule H inac-
cessibility, we have that even very
long loops, if density is sufficiently
low, are less likely to be linked
under rule H than by arbitrary pas-
sage, hence the limit at D . 1. If
instead we allow the density to
increase as we increase length, so
the loops become both very long
and completely intermingled, then
we conjecture that D ¼ 1 and topoi-
somerase cannot lower the equili-
brium. We expect different values
for C and D for knots. The asymp-
tote at length ¼ C: as the length
gets small, the ratio of free to
hooked juxtapositions in knots
goes to zero, knots are formed by
subarcs of the circle that them-
selves, because of the constraints,

behave like perfect circles in that they are rule H inaccessible. (In tight conformations the curvature of one strand is
greater than that of the strand passing through it). The horizontal asymptote at (Kb/Ub)/(Kto/Uto) ¼ D as length
tends to infinity: this case is similar to the linking analysis, in that the density is an important factor. The mathematical
theory here is incomplete, but models based on random walks in unconstrained spaces show that chains tend to
localize at least some of their knotting and tangling.16,17 The curvature is likely to be high at the localization, ripe for
rule H action. In a localized knot component, the effective length of that part of the strand is small, so we effectively
are close to the value length ¼ C, so we expect that type-2 topoisomerase would be much more likely to remove a
localized knot that to create one. On the other hand, it has been shown that in unconstrained random walks there is
at least some global knotting, so the determination of D in this model is an open question. An unconstrained random
walk is only a model for DNA, and clearly has some deficiencies as a model for DNA in the cell, where the packing
is not random and there are severe volumetric constraints. Again, the mathematical theory is lacking, but it is plausible
that a volume constraint would give a greater percentage of global knotting, thus reducing D for random chains.
B, Data are from Rybenkov et al.1 The fold reduction is relative to the amount of linking (or knotting) seen in
equilibrium without type-2 topoisomerase.
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